Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eli Keshet is active.

Publication


Featured researches published by Eli Keshet.


Nature | 1998

Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis.

Peter Carmeliet; Yuval Dor; Jean-Marc Herbert; Dai Fukumura; Koen Brusselmans; Mieke Dewerchin; Michal Neeman; Françoise Bono; Rinat Abramovitch; Patrick H. Maxwell; Cameron J. Koch; Peter J. Ratcliffe; Lieve Moons; Rakesh K. Jain; Desire Collen; Eli Keshet

As a result of deprivation of oxygen (hypoxia) and nutrients, the growth and viability of cells is reduced. Hypoxia-inducible factor(HIF)-1α helps to restore oxygen homeostasis by inducing glycolysis, erythropoiesis and angiogenesis. Here we show that hypoxia and hypoglycaemia reduce proliferation and increase apoptosis in wild-type (HIF-1α+/+) embryonic stem (ES) cells, but not in ES cells with inactivated HIF-1α genes (HIF-1α−/−); however, a deficiency of HIF-1α does not affect apoptosis induced by cytokines. We find that hypoxia/hypoglycaemia-regulated genes involved in controlling the cell cycle are either HIF-1α-dependent (those encoding the proteins p53, p21, Bcl-2) or HIF-1α-independent (p27, GADD153), suggesting that there are at least two different adaptive responses to being deprived of oxygen and nutrients. Loss of HIF-1α reduces hypoxia-induced expression of vascular endothelial growth factor, prevents formation of large vessels in ES-derived tumours, and impairs vascular function, resulting in hypoxic microenvironments within the tumour mass. However, growth of HIF-1α tumours was not retarded but was accelerated, owing to decreased hypoxia-induced apoptosis and increased stress-induced proliferation. As hypoxic stress contributes to many (patho)biological disorders,, this new role for HIF-1α in hypoxic control of cell growth and death may be of general pathophysiological importance.


Journal of Clinical Investigation | 1999

Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal

Laura E. Benjamin; Dragan Golijanin; Ahuva Itin; Dov Pode; Eli Keshet

Features that distinguish tumor vasculatures from normal blood vessels are sought to enable the destruction of preformed tumor vessels. We show that blood vessels in both a xenografted tumor and primary human tumors contain a sizable fraction of immature blood vessels that have not yet recruited periendothelial cells. These immature vessels are selectively obliterated as a consequence of vascular endothelial growth factor (VEGF) withdrawal. In a xenografted glioma, the selective vulnerability of immature vessels to VEGF loss was demonstrated by downregulating VEGF transgene expression using a tetracycline-regulated expression system. In human prostate cancer, the constitutive production of VEGF by the glandular epithelium was suppressed as a consequence of androgen-ablation therapy. VEGF loss led, in turn, to selective apoptosis of endothelial cells in vessels devoid of periendothelial cells. These results suggest that the unique dependence on VEGF of blood vessels lacking periendothelial cells can be exploited to reduce an existing tumor vasculature.


Cell | 2006

VEGF-Induced Adult Neovascularization: Recruitment, Retention, and Role of Accessory Cells

Myriam Grunewald; Inbal Avraham; Yuval Dor; Esther Bachar-Lustig; Ahuva Itin; Steffen Yung; Stephano Chimenti; Limor Landsman; Rinat Abramovitch; Eli Keshet

Adult neovascularization relies on the recruitment of circulating cells, but their angiogenic roles and recruitment mechanisms are unclear. We show that the endothelial growth factor VEGF is sufficient for organ homing of circulating mononuclear myeloid cells and is required for their perivascular positioning and retention. Recruited bone marrow-derived circulating cells (RBCCs) summoned by VEGF serve a function distinct from endothelial progenitor cells. Retention of RBCCs in close proximity to angiogenic vessels is mediated by SDF1, a chemokine induced by VEGF in activated perivascular myofibroblasts. RBCCs enhance in situ proliferation of endothelial cells via secreting proangiogenic activities distinct from locally induced activities. Precluding RBCCs strongly attenuated the proangiogenic response to VEGF and addition of purified RBCCs enhanced angiogenesis in excision wounds. Together, the data suggest a model for VEGF-programmed adult neovascularization highlighting the essential paracrine role of recruited myeloid cells and a role for SDF1 in their perivascular retention.


Nature Medicine | 1999

Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure.

Stephane Heymans; Aernout Luttun; Dieter Nuyens; Gregor Theilmeier; Esther E. Creemers; Lieve Moons; G D Dyspersin; Jpm Cleutjens; M Shipley; A Angellilo; Marcel Levi; O Nübe; Andrew Baker; Eli Keshet; Florea Lupu; Jean-Marc Herbert; Jos F.M. Smits; Steve Shapiro; Myriam Baes; Marcel Borgers; Desire Collen; Mat J.A.P. Daemen; Peter Carmeliet

Cardiac rupture is a fatal complication of acute myocardial infarction lacking treatment. Here, acute myocardial infarction resulted in rupture in wild-type mice and in mice lacking tissue-type plasminogen activator, urokinase receptor, matrix metalloproteinase stromelysin-1 or metalloelastase. Instead, deficiency of urokinase-type plasminogen activator (u-PA–/–) completely protected against rupture, whereas lack of gelatinase-B partially protected against rupture. However, u-PA–/– mice showed impaired scar formation and infarct revascularization, even after treatment with vascular endothelial growth factor, and died of cardiac failure due to depressed contractility, arrhythmias and ischemia. Temporary administration of PA inhibitor-1 or the matrix metalloproteinase-inhibitor TIMP-1 completely protected wild-type mice against rupture but did not abort infarct healing, thus constituting a new approach to prevent cardiac rupture after acute myocardial infarction.


Nature Medicine | 2002

Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice

Veerle Compernolle; Koen Brusselmans; Till Acker; Peter Hoet; Marc Tjwa; Heike Beck; Stephane Plaisance; Yuval Dor; Eli Keshet; Florea Lupu; Benoit Nemery; Mieke Dewerchin; Paul P. Van Veldhoven; Karl H. Plate; Lieve Moons; Desire Collen; Peter Carmeliet

Respiratory distress syndrome (RDS) due to insufficient production of surfactant is a common and severe complication of preterm delivery. Here, we report that loss of the hypoxia-inducible transcription factor-2α (HIF-2α) caused fatal RDS in neonatal mice due to insufficient surfactant production by alveolar type 2 cells. VEGF, a target of HIF-2α, regulates fetal lung maturation: because VEGF levels in alveolar cells were reduced in HIF-2α-deficient fetuses; mice with a deficiency of the VEGF164 and VEGF188 isoforms or of the HIF-binding site in the VEGF promotor died of RDS; intrauterine delivery of anti-VEGF-receptor-2 antibodies caused RDS and VEGF stimulated production of surfactant proteins by cultured type 2 pneumocytes. Intrauterine delivery or postnatal intratracheal instillation of VEGF stimulated conversion of glycogen to surfactant and protected preterm mice against RDS. The pneumotrophic effect of VEGF may have therapeutic potential for lung maturation in preterm infants.


Journal of Clinical Investigation | 1993

Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis

Dorit Shweiki; Ahuva Itin; Gera Neufeld; Hela Gitay-Goren; Eli Keshet

Vascular endothelial growth factor (VEGF) is a secreted endothelial cell-specific mitogen. To evaluate whether VEGF may play a role in angiogenesis, we have determined the spatial and temporal patterns of expression of VEGF and VEGF receptors during natural angiogenic processes taking place within the female reproductive system. Four angiogenic processes were analyzed: neovascularization of ovarian follicles, neovascularization of the corpus luteum, repair of endometrial vessels, and angiogenesis in embryonic implantation sites. During all processes, VEGF mRNA was found to be expressed in cells surrounding the expanding vasculature. VEGF was predominantly produced in tissues that acquire new capillary networks (theca layers, lutein cells, endometrial stroma, and the maternal decidua, respectively). VEGF-binding activity, on the other hand, was found on endothelial cells of both quiescent and proliferating blood vessels. These findings are consistent with a role for VEGF in the targeting of angiogenic responses to specific areas. Using in situ hybridization, we show that VEGF is expressed in 10 different steroidogenic and/or steroid-responsive cell types (theca, cumulus, granulosa, lutein, oviductal epithelium, endometrial stroma, decidua, giant trophoblast cells, adrenal cortex, and Leydig cells). Furthermore, in some cells upregulation of VEGF expression is concurrent with the acquisition of steroidogenic activity, and expression in other cell types is restricted to a particular stage of the ovarian cycle. These findings suggest that expression of VEGF is hormonally regulated. We propose that excessive expression of VEGF during gonadotropin-induced ovulation may contribute to the development of ovarian hyperstimulation syndromes by virtue of the vascular permeabilization activity of this factor.


Journal of Biological Chemistry | 1997

VEGF145, a Secreted Vascular Endothelial Growth Factor Isoform That Binds to Extracellular Matrix

Zoya Poltorak; Tzafra Cohen; Revital Sivan; Yelena Kandelis; Gadi Spira; Israel Vlodavsky; Eli Keshet; Gera Neufeld

A vascular endothelial growth factor (VEGF) mRNA species containing exons 1-6 and 8 of the VEGF gene was found to be expressed as a major VEGF mRNA form in several cell lines derived from carcinomas of the female reproductive system. This mRNA is predicted to encode a VEGF form of 145 amino acids (VEGF145). Recombinant VEGF145 induced the proliferation of vascular endothelial cells and promoted angiogenesis in vivo VEGF145 was compared with previously characterized VEGF species with respect to interaction with heparin-like molecules, cellular distribution, VEGF receptor recognition, and extracellular matrix (ECM) binding ability. VEGF145 shares with VEGF165 the ability to bind to the KDR/flk-1 receptor of endothelial cells. It also binds to heparin with an affinity similar to that of VEGF165. However, VEGF145 does not bind to two additional endothelial cell surface receptors that are recognized by VEGF165 but not by VEGF121. VEGF145 is secreted from producing cells as are VEGF121 and VEGF165. However, VEGF121 and VEGF165 do not bind to the ECM produced by corneal endothelial cells, whereas VEGF145 binds efficiently to this ECM. Basic fibroblast growth factor (bFGF)-depleted ECM containing bound VEGF145 induces proliferation of endothelial cells, indicating that the bound VEGF145 is active. The mechanism by which VEGF145 binds to the ECM differs from that of bFGF. Digestion of the ECM by heparinase inhibited the binding of bFGF to the ECM and released prebound bFGF, whereas the binding of VEGF145 was not affected by heparinase digestion. It therefore seems that VEGF145 possesses a unique combination of biological properties distinct from those of previously characterized VEGF species.


Molecular and Cellular Biology | 1998

Translation of Vascular Endothelial Growth Factor mRNA by Internal Ribosome Entry: Implications for Translation under Hypoxia

Ilan Stein; Ahuva Itin; Paz Einat; Rami Skaliter; Zehava Grossman; Eli Keshet

ABSTRACT Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic growth factor that promotes compensatory angiogenesis in circumstances of oxygen shortage. The requirement for translational regulation of VEGF is imposed by the cumbersome structure of the 5′ untranslated region (5′UTR), which is incompatible with efficient translation by ribosomal scanning, and by the physiologic requirement for maximal VEGF production under conditions of hypoxia, where overall protein synthesis is compromised. Using bicistronic reporter gene constructs, we show that the 1,014-bp 5′UTR of VEGF contains a functional internal ribosome entry site (IRES). Efficient cap-independent translation is maintained under hypoxia, thereby securing efficient production of VEGF even under unfavorable stress conditions. To identify sequences within the 5′UTR required for maximal IRES activity, deletion mutants were analyzed. Elimination of the majority (851 nucleotides) of internal 5′UTR sequences not only maintained full IRES activity but also generated a significantly more potent IRES. Activity of the 163-bp long “improved” IRES element was abrogated, however, following substitution of a few bases near the 5′ terminus as well as substitutions close to the translation start codon. Both the full-length 5′UTR and its truncated version function as translational enhancers in the context of a monocistronic mRNA.


Molecular and Cellular Biology | 1995

Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes.

Ilan Stein; M Neeman; D Shweiki; Ahuva Itin; Eli Keshet

Expression of vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen and a potent angiogenic factor, is upregulated in response to a hypoxic or hypoglycemic stress. Here we show that the increase in steady-state levels of VEGF mRNA is partly due to transcriptional activation but mostly due to increase in mRNA stability. Both oxygen and glucose deficiencies result in extension of the VEGF mRNA half-life in a protein synthesis-dependent manner. Viewing VEGF as a stress-induced gene, we compared its mode of regulation with that of other stress-induced genes. Results showed that under nonstressed conditions, VEGF shares with the glucose transporter GLUT-1 a relatively short half-life (0.64 and 0.52 h, respectively), which is extended fourfold and more than eightfold, respectively, when cells are deprived of either oxygen or glucose. In contrast, the mRNAs of another hypoxia-inducible and hypoglycemia-inducible gene, grp78, as well as that of HSP70, were not stabilized by these metabolic insults. To show that VEGF and GLUT-1 are coinduced in differentially stressed microenvironments, multicell spheroids representing a clonal population of glioma cells in which each cell layer is differentially stressed were analyzed by in situ hybridization. Cellular microenvironments conducive to induction of VEGF and GLUT-1 were completely coincidental. These findings show that two different consequences of tissue ischemia, namely, hypoxia and glucose deprivation, induce VEGF and GLUT-1 expression by similar mechanisms. These proteins function, in turn, to satisfy the tissue needs through expanding its vasculature and improving its glucose utilization, respectively.


Molecular and Cellular Biology | 2002

Identification of a Novel Hypoxia-Inducible Factor 1-Responsive Gene, RTP801, Involved in Apoptosis

Tzipora Shoshani; Alexander Faerman; Igor Mett; Elena Zelin; Tamar Tenne; Svetlana Gorodin; Yana Moshel; Shlomo Elbaz; Ayelet Chajut; Hagar Kalinski; Iris Kamer; Ada Rozen; Orna Mor; Eli Keshet; Dena Leshkowitz; Paz Einat; Rami Skaliter; Elena Feinstein

ABSTRACT Hypoxia is an important factor that elicits numerous physiological and pathological responses. One of the major gene expression programs triggered by hypoxia is mediated through hypoxia-responsive transcription factor hypoxia-inducible factor 1 (HIF-1). Here, we report the identification and cloning of a novel HIF-1-responsive gene, designated RTP801. Its strong up-regulation by hypoxia was detected both in vitro and in vivo in an animal model of ischemic stroke. When induced from a tetracycline-repressible promoter, RTP801 protected MCF7 and PC12 cells from hypoxia in glucose-free medium and from H2O2-triggered apoptosis via a dramatic reduction in the generation of reactive oxygen species. However, expression of RTP801 appeared toxic for nondividing neuron-like PC12 cells and increased their sensitivity to ischemic injury and oxidative stress. Liposomal delivery of RTP801 cDNA to mouse lungs also resulted in massive cell death. Thus, the biological effect of RTP801 overexpression depends on the cell context and may be either protecting or detrimental for cells under conditions of oxidative or ischemic stresses. Altogether, the data suggest a complex type of involvement of RTP801 in the pathogenesis of ischemic diseases.

Collaboration


Dive into the Eli Keshet's collaboration.

Top Co-Authors

Avatar

Ahuva Itin

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yuval Dor

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Peter Carmeliet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gera Neufeld

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dalit May

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Israel Vlodavsky

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jacob Pe'er

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Myriam Grunewald

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Tamar Licht

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Laura E. Benjamin

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge