Elias Campo
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elias Campo.
Nature | 2013
Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
Blood | 2016
Steven H. Swerdlow; Elias Campo; Stefano Pileri; Nancy Lee Harris; Harald Stein; Reiner Siebert; Ranjana H. Advani; Michele Ghielmini; Gilles Salles; Andrew D. Zelenetz; Elaine S. Jaffe
A revision of the nearly 8-year-old World Health Organization classification of the lymphoid neoplasms and the accompanying monograph is being published. It reflects a consensus among hematopathologists, geneticists, and clinicians regarding both updates to current entities as well as the addition of a limited number of new provisional entities. The revision clarifies the diagnosis and management of lesions at the very early stages of lymphomagenesis, refines the diagnostic criteria for some entities, details the expanding genetic/molecular landscape of numerous lymphoid neoplasms and their clinical correlates, and refers to investigations leading to more targeted therapeutic strategies. The major changes are reviewed with an emphasis on the most important advances in our understanding that impact our diagnostic approach, clinical expectations, and therapeutic strategies for the lymphoid neoplasms.
Nature | 2011
Xose S. Puente; Magda Pinyol; Víctor Quesada; Laura Conde; Gonzalo R. Ordóñez; Neus Villamor; Geòrgia Escaramís; Pedro Jares; Sílvia Beà; Marcos González-Díaz; Laia Bassaganyas; Tycho Baumann; Manel Juan; Mónica López-Guerra; Dolors Colomer; Jose M. C. Tubio; Cristina López; Alba Navarro; Cristian Tornador; Marta Aymerich; María Rozman; Jesús Hernández; Diana A. Puente; José M. P. Freije; Gloria Velasco; Ana Gutiérrez-Fernández; Dolors Costa; Anna Carrió; Sara Guijarro; Anna Enjuanes
Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.
Blood | 2011
Elias Campo; Steven H. Swerdlow; Nancy Lee Harris; Stefano Pileri; Harald Stein; Elaine S. Jaffe
The World Health Organization classification of lymphoid neoplasms updated in 2008 represents a worldwide consensus on the diagnosis of these tumors and is based on the recognition of distinct diseases, using a multidisciplinary approach. The updated classification refined the definitions of well-recognized diseases, identified new entities and variants, and incorporated emerging concepts in the understanding of lymphoid neoplasms. However, some questions were unresolved, such as the extent to which specific genetic or molecular alterations define certain tumors, and the status of provisional entities, categories for which the World Health Organization working groups felt there was insufficient evidence to recognize as distinct diseases at this time. In addition, since its publication, new findings and ideas have been generated. This review summarizes the scientific rationale for the classification, emphasizing changes that have had an effect on practice guidelines. The authors address the criteria and significance of early or precursor lesions and the identification of certain lymphoid neoplasms largely associated with particular age groups, such as children and the elderly. The issue of borderline categories having overlapping features with large B-cell lymphomas, as well as several provisional entities, is reviewed. These new observations chart a course for future research in the field.
Nature | 2010
R. Eric Davis; Vu N. Ngo; Georg Lenz; Pavel Tolar; Ryan M. Young; Paul B. Romesser; Holger Kohlhammer; Laurence Lamy; Hong Zhao; Yandan Yang; Weihong Xu; Arthur L. Shaffer; George E. Wright; Wenming Xiao; John Powell; Jian Kang Jiang; Craig J. Thomas; Andreas Rosenwald; German Ott; Hans Konrad Müller-Hermelink; Randy D. Gascoyne; Joseph M. Connors; Nathalie A. Johnson; Lisa M. Rimsza; Elias Campo; Elaine S. Jaffe; Wyndham H. Wilson; Jan Delabie; Erlend B. Smeland; Richard I. Fisher
A role for B-cell-receptor (BCR) signalling in lymphomagenesis has been inferred by studying immunoglobulin genes in human lymphomas and by engineering mouse models, but genetic and functional evidence for its oncogenic role in human lymphomas is needed. Here we describe a form of ‘chronic active’ BCR signalling that is required for cell survival in the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). The signalling adaptor CARD11 is required for constitutive NF-κB pathway activity and survival in ABC DLBCL. Roughly 10% of ABC DLBCLs have mutant CARD11 isoforms that activate NF-κB, but the mechanism that engages wild-type CARD11 in other ABC DLBCLs was unknown. An RNA interference genetic screen revealed that a BCR signalling component, Bruton’s tyrosine kinase, is essential for the survival of ABC DLBCLs with wild-type CARD11. In addition, knockdown of proximal BCR subunits (IgM, Ig-κ, CD79A and CD79B) killed ABC DLBCLs with wild-type CARD11 but not other lymphomas. The BCRs in these ABC DLBCLs formed prominent clusters in the plasma membrane with low diffusion, similarly to BCRs in antigen-stimulated normal B cells. Somatic mutations affecting the immunoreceptor tyrosine-based activation motif (ITAM) signalling modules of CD79B and CD79A were detected frequently in ABC DLBCL biopsy samples but rarely in other DLBCLs and never in Burkitt’s lymphoma or mucosa-associated lymphoid tissue lymphoma. In 18% of ABC DLBCLs, one functionally critical residue of CD79B, the first ITAM tyrosine, was mutated. These mutations increased surface BCR expression and attenuated Lyn kinase, a feedback inhibitor of BCR signalling. These findings establish chronic active BCR signalling as a new pathogenetic mechanism in ABC DLBCL, suggesting several therapeutic strategies.
Journal of Experimental Medicine | 2003
Andreas Rosenwald; George E. Wright; Karen Leroy; Xin-You Yu; Philippe Gaulard; Randy D. Gascoyne; Wing C. Chan; Tong Zhao; Corinne Haioun; Timothy C. Greiner; Dennis D. Weisenburger; James C. Lynch; Julie M. Vose; James O. Armitage; Erlend B. Smeland; Stein Kvaløy; Harald Holte; Jan Delabie; Elias Campo; Emili Montserrat; Armando López-Guillermo; German Ott; H. Konrad Muller-Hermelink; Joseph M. Connors; Rita M. Braziel; Thomas M. Grogan; Richard I. Fisher; Thomas P. Miller; Michael LeBlanc; Michael Chiorazzi
Using current diagnostic criteria, primary mediastinal B cell lymphoma (PMBL) cannot be distinguished from other types of diffuse large B cell lymphoma (DLBCL) reliably. We used gene expression profiling to develop a more precise molecular diagnosis of PMBL. PMBL patients were considerably younger than other DLBCL patients, and their lymphomas frequently involved other thoracic structures but not extrathoracic sites typical of other DLBCLs. PMBL patients had a relatively favorable clinical outcome, with a 5-yr survival rate of 64% compared with 46% for other DLBCL patients. Gene expression profiling strongly supported a relationship between PMBL and Hodgkin lymphoma: over one third of the genes that were more highly expressed in PMBL than in other DLBCLs were also characteristically expressed in Hodgkin lymphoma cells. PDL2, which encodes a regulator of T cell activation, was the gene that best discriminated PMBL from other DLBCLs and was also highly expressed in Hodgkin lymphoma cells. The genomic loci for PDL2 and several neighboring genes were amplified in over half of the PMBLs and in Hodgkin lymphoma cell lines. The molecular diagnosis of PMBL should significantly aid in the development of therapies tailored to this clinically and pathogenetically distinctive subgroup of DLBCL.
Nature | 2011
Vu N. Ngo; Ryan M. Young; Roland Schmitz; Sameer Jhavar; Wenming Xiao; Kian-Huat Lim; Holger Kohlhammer; Weihong Xu; Yandan Yang; Hong Zhao; Arthur L. Shaffer; Paul B. Romesser; George E. Wright; John Powell; Andreas Rosenwald; Hans Konrad Müller-Hermelink; German Ott; Randy D. Gascoyne; Joseph M. Connors; Lisa M. Rimsza; Elias Campo; Elaine S. Jaffe; Jan Delabie; Erlend B. Smeland; Richard I. Fisher; Rita M. Braziel; Raymond R. Tubbs; James R. Cook; Denny D. Weisenburger; Wing C. Chan
The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, the MYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations.
The New England Journal of Medicine | 2010
Christian Steidl; Tang Lee; Sohrab P. Shah; Pedro Farinha; Guangming Han; Tarun Nayar; Allen Delaney; Steven J.M. Jones; Javeed Iqbal; Dennis D. Weisenburger; Martin Bast; Andreas Rosenwald; Hans Konrad Müller-Hermelink; Lisa M. Rimsza; Elias Campo; Jan Delabie; Rita M. Braziel; James R. Cook; Ray Tubbs; Elaine S. Jaffe; Georg Lenz; Joseph M. Connors; Louis M. Staudt; Wing C. Chan; Randy D. Gascoyne
BACKGROUND Despite advances in treatments for Hodgkins lymphoma, about 20% of patients still die from progressive disease. Current prognostic models predict the outcome of treatment with imperfect accuracy, and clinically relevant biomarkers have not been established to improve on the International Prognostic Score. METHODS Using gene-expression profiling, we analyzed 130 frozen samples obtained from patients with classic Hodgkins lymphoma during diagnostic lymph-node biopsy to determine which cellular signatures were correlated with treatment outcome. We confirmed our findings in an independent cohort of 166 patients, using immunohistochemical analysis. RESULTS Gene-expression profiling identified a gene signature of tumor-associated macrophages that was significantly associated with primary treatment failure (P=0.02). In an independent cohort of patients, we found that an increased number of CD68+ macrophages was correlated with a shortened progression-free survival (P=0.03) and with an increased likelihood of relapse after autologous hematopoietic stem-cell transplantation (P=0.008), resulting in shortened disease-specific survival (P=0.003). In multivariate analysis, this adverse prognostic factor outperformed the International Prognostic Score for disease-specific survival (P=0.003 vs. P=0.03). The absence of an elevated number of CD68+ cells in patients with limited-stage disease defined a subgroup of patients with a long-term disease-specific survival of 100% with the use of current treatment strategies. CONCLUSIONS An increased number of tumor-associated macrophages was strongly associated with shortened survival in patients with classic Hodgkins lymphoma and provides a new biomarker for risk stratification.
Nature Genetics | 2012
Víctor Quesada; Laura Conde; Neus Villamor; Gonzalo R. Ordóñez; Pedro Jares; Laia Bassaganyas; Andrew J. Ramsay; Sílvia Beà; Magda Pinyol; Alejandra Martínez-Trillos; Mónica López-Guerra; Dolors Colomer; Alba Navarro; Tycho Baumann; Marta Aymerich; María Rozman; Julio Delgado; Eva Giné; Jesús Hernández; Marcos González-Díaz; Diana A. Puente; Gloria Velasco; José M. P. Freije; Jose M. C. Tubio; Romina Royo; Josep Lluís Gelpí; Modesto Orozco; David G. Pisano; Jorge Zamora; Miguel Vazquez
Here we perform whole-exome sequencing of samples from 105 individuals with chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults in Western countries. We found 1,246 somatic mutations potentially affecting gene function and identified 78 genes with predicted functional alterations in more than one tumor sample. Among these genes, SF3B1, encoding a subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP), is somatically mutated in 9.7% of affected individuals. Further analysis in 279 individuals with CLL showed that SF3B1 mutations were associated with faster disease progression and poor overall survival. This work provides the first comprehensive catalog of somatic mutations in CLL with relevant clinical correlates and defines a large set of new genes that may drive the development of this common form of leukemia. The results reinforce the idea that targeting several well-known genetic pathways, including mRNA splicing, could be useful in the treatment of CLL and other malignancies.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Georg Lenz; George W. Wright; N. C. Tolga Emre; Holger Kohlhammer; Sandeep S. Dave; R. Eric Davis; Shannon Carty; Lloyd T. Lam; Arthur L. Shaffer; Wenming Xiao; John Powell; Andreas Rosenwald; German Ott; Hans Konrad Müller-Hermelink; Randy D. Gascoyne; Joseph M. Connors; Elias Campo; Elaine S. Jaffe; Jan Delabie; Erlend B. Smeland; Lisa M. Rimsza; Richard I. Fisher; Dennis D. Weisenburger; Wing C. Chan; Louis M. Staudt
Gene-expression profiling has been used to define 3 molecular subtypes of diffuse large B-cell lymphoma (DLBCL), termed germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and primary mediastinal B-cell lymphoma (PMBL). To investigate whether these DLBCL subtypes arise by distinct pathogenetic mechanisms, we analyzed 203 DLBCL biopsy samples by high-resolution, genome-wide copy number analysis coupled with gene-expression profiling. Of 272 recurrent chromosomal aberrations that were associated with gene-expression alterations, 30 were used differentially by the DLBCL subtypes (P < 0.006). An amplicon on chromosome 19 was detected in 26% of ABC DLBCLs but in only 3% of GCB DLBCLs and PMBLs. A highly up-regulated gene in this amplicon was SPIB, which encodes an ETS family transcription factor. Knockdown of SPIB by RNA interference was toxic to ABC DLBCL cell lines but not to GCB DLBCL, PMBL, or myeloma cell lines, strongly implicating SPIB as an oncogene involved in the pathogenesis of ABC DLBCL. Deletion of the INK4a/ARF tumor suppressor locus and trisomy 3 also occurred almost exclusively in ABC DLBCLs and was associated with inferior outcome within this subtype. FOXP1 emerged as a potential oncogene in ABC DLBCL that was up-regulated by trisomy 3 and by more focal high-level amplifications. In GCB DLBCL, amplification of the oncogenic mir-17–92 microRNA cluster and deletion of the tumor suppressor PTEN were recurrent, but these events did not occur in ABC DLBCL. Together, these data provide genetic evidence that the DLBCL subtypes are distinct diseases that use different oncogenic pathways.