Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elias Lolis is active.

Publication


Featured researches published by Elias Lolis.


Science | 2011

K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension

Murim Choi; Ute I. Scholl; Peng Yue; Peyman Björklund; Bixiao Zhao; Carol Nelson-Williams; Weizhen Ji; Yoonsang Cho; Aniruddh P. Patel; Clara J. Men; Elias Lolis; Max Wisgerhof; David S. Geller; Shrikant Mane; Per Hellman; Gunnar Westin; Göran Åkerström; Wen-Hui Wang; Tobias Carling; Richard P. Lifton

Potassium channel mutations drive both cell growth and hormone production in an adrenal tumor that causes severe hypertension. Endocrine tumors such as aldosterone-producing adrenal adenomas (APAs), a cause of severe hypertension, feature constitutive hormone production and unrestrained cell proliferation; the mechanisms linking these events are unknown. We identify two recurrent somatic mutations in and near the selectivity filter of the potassium (K+) channel KCNJ5 that are present in 8 of 22 human APAs studied. Both produce increased sodium (Na+) conductance and cell depolarization, which in adrenal glomerulosa cells produces calcium (Ca2+) entry, the signal for aldosterone production and cell proliferation. Similarly, we identify an inherited KCNJ5 mutation that produces increased Na+ conductance in a Mendelian form of severe aldosteronism and massive bilateral adrenal hyperplasia. These findings explain pathogenesis in a subset of patients with severe hypertension and implicate loss of K+ channel selectivity in constitutive cell proliferation and hormone production.


Nature Immunology | 2001

Development of chronic colitis is dependent on the cytokine MIF

Ype P. de Jong; Ana Clara Abadía-Molina; Abhay R. Satoskar; Kareem Clarke; Svend T. Rietdijk; William A. Faubion; Emiko Mizoguchi; Christine N. Metz; Mazen Al Sahli; Tessa ten Hove; Andrew C. Keates; Jodi B. Lubetsky; Richard J. Farrell; Pierre Michetti; Sander J. H. van Deventer; Elias Lolis; John R. David; Atul K. Bhan; Cox Terhorst

The cytokine macrophage-migration inhibitory factor (MIF) is secreted by a number of cell types upon induction by lipopolysaccharide (LPS). Because colitis is dependent on interplay between the mucosal immune system and intestinal bacteria, we investigated the role of MIF in experimental colitis. MIF-deficient mice failed to develop disease, but reconstitution of MIF-deficient mice with wild-type innate immune cells restored colitis. In addition, established colitis could be treated with anti-MIF immunoglobulins. Thus, murine colitis is dependent on continuous MIF production by the innate immune system. Because we found increased plasma MIF concentrations in patients with Crohns disease, these data suggested that MIF is a new target for intervention in Crohns disease.


The EMBO Journal | 1998

Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor

Melissa Swope; Hong Wei Sun; Paul Blake; Elias Lolis

Macrophage migration inhibitory factor (MIF) is a secreted protein that activates macrophages, neutrophils and T cells, and is implicated in sepsis, adult respiratory distress syndrome and rheumatoid arthritis. The mechanism of MIF function, however, is unknown. The three‐dimensional structure of MIF is unlike that of any other cytokine, but bears striking resemblance to three microbial enzymes, two of which possess an N‐terminal proline that serves as a catalytic base. Human MIF also possesses an N‐terminal proline (Pro‐1) that is invariant among all known homologues. Multiple sequence alignment of these MIF homologues reveals additional invariant residues that span the entire polypeptide but are in close proximity to the N‐terminal proline in the folded protein. We find that p‐hydroxyphenylpyruvate, a catalytic substrate of MIF, binds to the N‐terminal region and interacts with Pro–1. Mutation of Pro‐1 to a glycine substantially reduces the catalytic and cytokine activity of MIF. We suggest that the underlying biological activity of MIF may be based on an enzymatic reaction. The identification of the active site should facilitate the development of structure‐based inhibitors.


Journal of Biological Chemistry | 2007

Structural and Functional Basis of CXCL12 (Stromal Cell-derived Factor-1{alpha}) Binding to Heparin

James W. Murphy; Yoonsang Cho; Aristidis Sachpatzidis; Chengpeng Fan; Michael E. Hodsdon; Elias Lolis

CXCL12 (SDF-1α) and CXCR4 are critical for embryonic development and cellular migration in adults. These proteins are involved in HIV-1 infection, cancer metastasis, and WHIM disease. Sequestration and presentation of CXCL12 to CXCR4 by glycosaminoglycans (GAGs) is proposed to be important for receptor activation. Mutagenesis has identified CXCL12 residues that bind to heparin. However, the molecular details of this interaction have not yet been determined. Here we demonstrate that soluble heparin and heparan sulfate negatively affect CXCL12-mediated in vitro chemotaxis. We also show that a cluster of basic residues in the dimer interface is required for chemotaxis and is a target for inhibition by heparin. We present structural evidence for binding of an unsaturated heparin disaccharide to CXCL12 attained through solution NMR spectroscopy and x-ray crystallography. Increasing concentrations of the disaccharide altered the two-dimensional 1H-15N-HSQC spectra of CXCL12, which identified two clusters of residues. One cluster corresponds to β-strands in the dimer interface. The second includes the amino-terminal loop and the α-helix. In the x-ray structure two unsaturated disaccharides are present. One is in the dimer interface with direct contacts between residues His25, Lys27, and Arg41 of CXCL12 and the heparin disaccharide. The second disaccharide contacts Ala20, Arg21, Asn30, and Lys64. This is the first x-ray structure of a CXC class chemokine in complex with glycosaminoglycans. Based on the observation of two heparin binding sites, we propose a mechanism in which GAGs bind around CXCL12 dimers as they sequester and present CXCL12 to CXCR4.


Cancer Research | 2008

A novel, macrophage migration inhibitory factor suicide substrate inhibits motility and growth of lung cancer cells

Millicent Winner; Jason Meier; Swen Zierow; Beatriz E. Rendon; Gregg V. Crichlow; Randall Riggs; Richard Bucala; Lin Leng; Ned B. Smith; Elias Lolis; John O. Trent; Robert A. Mitchell

Although chemokine and growth factor receptors are attractive and popular targets for cancer therapeutic intervention, structure-based targeting of the ligands themselves is generally not considered practical. New evidence indicates that a notable exception to this is macrophage migration inhibitory factor (MIF). MIF, an autocrine- and paracrine-acting cytokine/growth factor, plays a pivotal role in both the initiation and maintenance of neoplastic diseases. MIF possesses a nonphysiologic enzymatic activity that is evolutionarily well-conserved. Although small molecule antagonists of MIFs enzymatic active site have been reported to inhibit biological activities of MIF, universally high IC(50)s have limited their clinical appeal. Using a computational virtual screening strategy, we have identified a unique small molecule inhibitor that serves as a suicide substrate for MIF, resulting in the covalent modification of the catalytically active NH(2)-terminal proline. Our studies further reveal that this compound, 4-iodo-6-phenylpyrimidine (4-IPP), is approximately 5x to 10x times more potent in blocking MIF-dependent catalysis and lung adenocarcinoma cell migration and anchorage-independent growth than the prototypical MIF inhibitor, ISO-1. Finally, using an in silico combinatorial optimization strategy, we have identified four unique congeners of 4-IPP that exhibit MIF inhibitory activity at concentrations 10x to 20x lower than that of parental 4-IPP.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF)

Melanie Merk; Swen Zierow; Lin Leng; Rituparna Das; Xin Du; Wibke Schulte; Juan Fan; Hongqi Lue; Yibang Chen; Huabao Xiong; Frederic Chagnon; Jürgen Bernhagen; Elias Lolis; Gil Mor; Olivier Lesur; Richard Bucala

Macrophage migration inhibitory factor (MIF) is a pivotal regulator of the immune response. Neutralization or genetic deletion of MIF does not completely abrogate activation responses, however, and deletion of the MIF receptor, CD74, produces a more pronounced phenotype than MIF deficiency. We hypothesized that these observations may be explained by a second MIF-like ligand, and we considered a probable candidate to be the protein encoded by the homologous, D-dopachrome tautomerase (D-DT) gene. We show that recombinant D-DT protein binds CD74 with high affinity, leading to activation of ERK1/2 MAP kinase and downstream proinflammatory pathways. Circulating D-DT levels correlate with disease severity in sepsis or malignancy, and the specific immunoneutralization of D-DT protects mice from lethal endotoxemia by reducing the expression of downstream effector cytokines. These data indicate that D-DT is a MIF-like cytokine with an overlapping spectrum of activities that are important for our understanding of MIF-dependent physiology and pathology.


Journal of Immunology | 2011

A small-molecule macrophage migration inhibitory factor antagonist protects against glomerulonephritis in lupus-prone NZB/NZW F1 and MRL/lpr mice.

Lin Leng; Liang Chen; Juan Fan; Dorothee Greven; Alvaro Arjona; Xin Du; David J. Austin; Michael Kashgarian; Zhinan Yin; Xiao R. Huang; Hui Y. Lan; Elias Lolis; David J. Nikolic-Paterson; Richard Bucala

Autoimmunity leads to the activation of innate effector pathways, proinflammatory cytokine production, and end-organ injury. Macrophage migration inhibitory factor (MIF) is an upstream activator of the innate response that mediates the recruitment and retention of monocytes via CD74 and associated chemokine receptors, and it has a role in the maintenance of B lymphocytes. High-expression MIF alleles also are associated with end-organ damage in different autoimmune diseases. We assessed the therapeutic efficacy of (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), an orally bioavailable MIF antagonist, in two distinct models of systemic lupus erythematosus: the NZB/NZW F1 and the MRL/lpr mouse strains. ISO-1, like anti-MIF, inhibited the interaction between MIF and its receptor, CD74, and in each model of disease, it reduced functional and histological indices of glomerulonephritis, CD74+ and CXCR4+ leukocyte recruitment, and proinflammatory cytokine and chemokine expression. Neither autoantibody production nor T and B cell activation were significantly affected, pointing to the specificity of MIF antagonism in reducing excessive proinflammatory responses. These data highlight the feasibility of targeting the MIF–MIF receptor interaction by small-molecule antagonism and support the therapeutic value of downregulating MIF-dependent pathways of tissue damage in systemic lupus erythematosus.


Journal of Immunology | 2008

A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses

Daniela Kamir; Swen Zierow; Lin Leng; Yoonsang Cho; Yira Diaz; Jason W. Griffith; Courtney McDonald; Melanie Merk; Robert A. Mitchell; John O. Trent; Yibang Chen; Yuen-Kwan Amy Kwong; Huabao Xiong; Jon J. Vermeire; Michael Cappello; Diane McMahon-Pratt; John K. Walker; Jürgen Bernhagen; Elias Lolis; Richard Bucala

Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 Å). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (Kd = 2.9 × 10−8 M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Protein crystallization facilitated by molecularly imprinted polymers

Emmanuel Saridakis; Sahir Khurshid; Lata Govada; Quan Phan; Daniel M. Hawkins; Gregg V. Crichlow; Elias Lolis; Subrayal M. Reddy; Naomi E. Chayen

We present a previously undescribed initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals that are essential for determining high-resolution 3D structures of proteins. MIPs, also referred to as “smart materials,” are made to contain cavities capable of rebinding protein; thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8–10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size compatibility being a likely criterion for efficacy. Atomic force microscopy (AFM) measurements demonstrated specific affinity between the MIP cavities and a protein-functionalized AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation-inducing substrates (nucleants) by harnessing the proteins themselves as templates.


Journal of Biological Chemistry | 2007

Structural and Functional Characterization of a Secreted Hookworm Macrophage Migration Inhibitory Factor (MIF) That Interacts with the Human MIF Receptor CD74

Yoonsang Cho; Brian F. Jones; Jon J. Vermeire; Lin Leng; Lisa M DiFedele; Lisa M. Harrison; Huabao Xiong; Yuen-Kwan Amy Kwong; Yibang Chen; Richard Bucala; Elias Lolis; Michael Cappello

Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins. The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis.

Collaboration


Dive into the Elias Lolis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge