Elias Zias
New York Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elias Zias.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Claudia Bearzi; Marcello Rota; Toru Hosoda; Jochen Tillmanns; Angelo Nascimbene; Antonella De Angelis; Saori Yasuzawa-Amano; Irina Trofimova; Robert W. Siggins; Nicole LeCapitaine; Stefano Cascapera; Antonio Paolo Beltrami; David A. D'Alessandro; Elias Zias; Federico Quaini; Konrad Urbanek; Robert E. Michler; Roberto Bolli; Jan Kajstura; Annarosa Leri; Piero Anversa
The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. The characterization of human cardiac stem cells (hCSCs) would have important clinical implications for the management of the failing heart. We have established the conditions for the isolation and expansion of c-kit-positive hCSCs from small samples of myocardium. Additionally, we have tested whether these cells have the ability to form functionally competent human myocardium after infarction in immunocompromised animals. Here, we report the identification in vitro of a class of human c-kit-positive cardiac cells that possess the fundamental properties of stem cells: they are self-renewing, clonogenic, and multipotent. hCSCs differentiate predominantly into cardiomyocytes and, to a lesser extent, into smooth muscle cells and endothelial cells. When locally injected in the infarcted myocardium of immunodeficient mice and immunosuppressed rats, hCSCs generate a chimeric heart, which contains human myocardium composed of myocytes, coronary resistance arterioles, and capillaries. The human myocardium is structurally and functionally integrated with the rodent myocardium and contributes to the performance of the infarcted heart. Differentiated human cardiac cells possess only one set of human sex chromosomes excluding cell fusion. The lack of cell fusion was confirmed by the Cre-lox strategy. Thus, hCSCs can be isolated and expanded in vitro for subsequent autologous regeneration of dead myocardium in patients affected by heart failure of ischemic and nonischemic origin.
Circulation Research | 2004
Jan Kajstura; Marcello Rota; Brian Whang; Stefano Cascapera; Toru Hosoda; Claudia Bearzi; Daria Nurzynska; Hideko Kasahara; Elias Zias; Massimiliano Bonafè; Bernardo Nadal-Ginard; Daniele Torella; Angelo Nascimbene; Federico Quaini; Konrad Urbanek; Annarosa Leri; Piero Anversa
Recent studies in mice have challenged the ability of bone marrow cells (BMCs) to differentiate into myocytes and coronary vessels. The claim has also been made that BMCs acquire a cell phenotype different from the blood lineages only by fusing with resident cells. Technical problems exist in the induction of myocardial infarction and the successful injection of BMCs in the mouse heart. Similarly, the accurate analysis of the cell populations implicated in the regeneration of the dead tissue is complex and these factors together may account for the negative findings. In this study, we have implemented a simple protocol that can easily be reproduced and have reevaluated whether injection of BMCs restores the infarcted myocardium in mice and whether cell fusion is involved in tissue reconstitution. For this purpose, c-kit–positive BMCs were obtained from male transgenic mice expressing enhanced green fluorescence protein (EGFP). EGFP and the Y-chromosome were used as markers of the progeny of the transplanted cells in the recipient heart. By this approach, we have demonstrated that BMCs, when properly administrated in the infarcted heart, efficiently differentiate into myocytes and coronary vessels with no detectable differentiation into hemopoietic lineages. However, BMCs have no apparent paracrine effect on the growth behavior of the surviving myocardium. Within the infarct, in 10 days, nearly 4.5 million biochemically and morphologically differentiated myocytes together with coronary arterioles and capillary structures were generated independently of cell fusion. In conclusion, BMCs adopt the cardiac cell lineages and have an important therapeutic impact on ischemic heart failure.
Circulation Research | 2004
Daniele Torella; Marcello Rota; Daria Nurzynska; Ezio Musso; Alyssa Monsen; Isao Shiraishi; Elias Zias; Kenneth Walsh; Anthony Rosenzweig; Mark A. Sussman; Konrad Urbanek; Bernardo Nadal-Ginard; Jan Kajstura; Piero Anversa; Annarosa Leri
Abstract— To determine whether cellular aging leads to a cardiomyopathy and heart failure, markers of cellular senescence, cell death, telomerase activity, telomere integrity, and cell regeneration were measured in myocytes of aging wild-type mice (WT). These parameters were similarly studied in insulin-like growth factor-1 (IGF-1) transgenic mice (TG) because IGF-1 promotes cell growth and survival and may delay cellular aging. Importantly, the consequences of aging on cardiac stem cell (CSC) growth and senescence were evaluated. Gene products implicated in growth arrest and senescence, such as p27Kip1, p53, p16INK4a, and p19ARF, were detected in myocytes of young WT mice, and their expression increased with age. IGF-1 attenuated the levels of these proteins at all ages. Telomerase activity decreased in aging WT myocytes but increased in TG, paralleling the changes in Akt phosphorylation. Reduction in nuclear phospho-Akt and telomerase resulted in telomere shortening and uncapping in WT myocytes. Senescence and death of CSCs increased with age in WT impairing the growth and turnover of cells in the heart. DNA damage and myocyte death exceeded cell formation in old WT, leading to a decreased number of myocytes and heart failure. This did not occur in TG in which CSC-mediated myocyte regeneration compensated for the extent of cell death preventing ventricular dysfunction. IGF-1 enhanced nuclear phospho-Akt and telomerase delaying cellular aging and death. The differential response of TG mice to chronological age may result from preservation of functional CSCs undergoing myocyte commitment. In conclusion, senescence of CSCs and myocytes conditions the development of an aging myopathy.
Circulation Research | 2007
Andrew P. Levy; K. Raman Purushothaman; Nina S. Levy; Meerarani Purushothaman; Merav Strauss; Rabea Asleh; Stuart Marsh; Osher Cohen; Søren K. Moestrup; Holger Jon Møller; Elias Zias; Daniel Benhayon; Valentin Fuster; Pedro R. Moreno
In individuals with diabetes mellitus (DM), the haptoglobin (Hp) genotype is a major determinant of susceptibility to myocardial infarction. We have proposed that this is because of DM and Hp genotype-dependent differences in the response to intraplaque hemorrhage. The macrophage hemoglobin scavenging receptor CD163 plays an essential role in the clearance of hemoglobin released from lysed red blood cells after intraplaque hemorrhage. We sought to test the hypothesis that expression of CD163 is DM and Hp genotype-dependent. CD163 was quantified in plaques by immunohistochemistry, on peripheral blood monocytes (PBMs) by FACS, and as soluble CD163 (sCD163) in plasma by ELISA. In DM plaques, despite an increase in macrophage infiltration, CD163 immunoreactivity was lower, resulting in a dramatic reduction in the percentage of macrophages expressing CD163 (27±2% versus 70±2%, P=0.0001). In individuals with DM as compared with individuals without DM, the percentage of PBMs expressing CD163 was reduced (3.7±0.6% versus 7.1±0.9%, P<0.002) whereas soluble plasma CD163 was increased (2.6±1.1 &mgr;g/mL versus 1.6±0.8 &mgr;g/mL, P<0.0005). Among DM individuals, the Hp 2-2 genotype was associated with a decrease in the percentage of PBMs expressing CD163 (2.3±0.5% versus 5.6±1.3%, P=0.01) and an increase in plasma soluble CD163 (3.0±0.2 &mgr;g/mL versus 2.3±0.2 &mgr;g/mL, P=0.04). Taken together, these results demonstrate an impaired hemoglobin clearance capacity in Hp 2-2 DM individuals and may provide the key insight explaining the increased incidence of myocardial infarction in this population.
Current Molecular Medicine | 2006
P. Meerarani; J. J. Badimon; Elias Zias; Valentin Fuster; Pedro R. Moreno
Metabolic syndrome is characterized by the clustering of a number of metabolic abnormalities in the presence of underlying insulin resistance with a strong association with diabetes and cardiovascular disease morbidity and mortality. The disorder is defined in different ways, but the pathophysiology is attributable to insulin resistance. An increased release of free fatty acids (FFAs) from adipocytes block insulin signal transduction pathway, induce endothelial dysfunction due to increased reactive oxygen species (ROS) generation and oxidative stress. Dyslipidemia, associated with high levels of triglycerides and low concentrations of high density lipoproteins (HDLs), contributes to a proinflammatory state. Inflammation, the key pathogenic component of atherosclerosis, promotes thrombosis, a process that underlies acute coronary event and stroke. Tissue factor, a potent trigger of the coagulation cascade, is increased in diabetes with poor glycemic control. Therapeutic lifestyle changes (weight loss and physical activity) along with pharmacological interventions are recommended to prevent the complications of metabolic syndrome. In addition to statins, metformin, blood pressure lowering medications, interventions to increase HDLs are other important approaches to decrease the risk of cardiovascular disease. Furthermore, the peroxisome proliferator activated receptor (PPAR)-alpha and gamma agonists are potent anti-inflammatory and anti-atherogenic agents that could both improve insulin sensitivity and the long-term cardiovascular risk. In this review we focus on the molecular and pathophysiological basis of metabolic syndrome, which augments diabetes (insulin resistance) and the contribution of neovascularization in the plaque progression in diabetes, leading to rupture and coronary thrombosis.
Current Molecular Medicine | 2006
K-Raman Purushothaman; Javier Sanz; Elias Zias; Valentin Fuster; Pedro R. Moreno
Neovascularization in atherosclerotic plaques is particularly prominent in complicated lesions, and has been recently identified as a marker of plaque vulnerability. This observation has led to a growing interest in the development of imaging techniques with the ability to visualize and quantify the extent of plaque neovascularization. Such feature may play an important role in identifying those lesions more prone to destabilization and rupture, and in the guidance and monitoring of therapeutic interventions. Several modalities have emerged as potential candidates for imaging neovessels in atherosclerotic lesions. They include magnetic resonance imaging, x-ray computed tomography, positron emission tomography, single photon emission computed tomography, ultrasound, or near-infrared optical imaging. These techniques differ in their achievable spatial and temporal resolution, availability, cost, reproducibility, degree of intrusiveness, capability to image atherosclerotic plaques in various vascular territories and ability to discern different plaque components, specifically the presence of neovessels. Molecular imaging, a rapidly evolving multidisciplinary field devoted to the visualization of specific physiopathologic processes at the cellular or molecular level, appears particularly well suited for this purpose because of its ability to target and visualize individual molecules specific to neoangiogenesis. In this manuscript we will review current evidence on the potential application of the various modalities, with a particular emphasis in molecular imaging.
Catheterization and Cardiovascular Interventions | 2004
Mohammad A. Saleem; Marise McNeeley; Elias Zias; Anthony L. Pucillo; Jae H. Ro; Melvin B. Weiss
Penetrating aortic ulcers (PAUs) are rare exotic pathological entities, classically located in the descending thoracic aorta. Their association with syphilis has never been reported. We describe a first case of a patient with cardiovascular syphilis presenting as PAU in the ascending aorta. Catheter Cardiovasc Interv 2004;61:16–19.
The Annals of Thoracic Surgery | 2004
Kiran Yalamanchili; Arlen G. Fleisher; Stuart G. Lehrman; Howard I. Axelrod; Rocco J. Lafaro; Mohan R. Sarabu; Elias Zias; Richard A. Moggio
Current Molecular Medicine | 2006
Pedro R. Moreno; K-Raman Purushothaman; Elias Zias; Javier Sanz; Fuster
Journal of Pharmacology and Experimental Therapeutics | 2004
Sachin A. Gupte; Elias Zias; Mohan R. Sarabu; Michael S. Wolin