Elicia Estrella
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elicia Estrella.
Cell Death & Differentiation | 2013
Matthew S. Alexander; Genri Kawahara; Norio Motohashi; Juan Carlos Casar; Iris Eisenberg; Jennifer A. Myers; Molly J. Gasperini; Elicia Estrella; Alvin T. Kho; Satomi Mitsuhashi; Frederic Shapiro; Peter B. Kang; Louis M. Kunkel
In patients with Duchenne muscular dystrophy (DMD), the absence of a functional dystrophin protein results in sarcolemmal instability, abnormal calcium signaling, cardiomyopathy, and skeletal muscle degeneration. Using the dystrophin-deficient sapje zebrafish model, we have identified microRNAs (miRNAs) that, in comparison to our previous findings in human DMD muscle biopsies, are uniquely dysregulated in dystrophic muscle across vertebrate species. MiR-199a-5p is dysregulated in dystrophin-deficient zebrafish, mdx5cv mice, and human muscle biopsies. MiR-199a-5p mature miRNA sequences are transcribed from stem loop precursor miRNAs that are found within the introns of the dynamin-2 and dynamin-3 loci. The miR-199a-2 stem loop precursor transcript that gives rise to the miR-199a-5p mature transcript was found to be elevated in human dystrophic muscle. The levels of expression of miR-199a-5p are regulated in a serum response factor (SRF)-dependent manner along with myocardin-related transcription factors. Inhibition of SRF-signaling reduces miR-199a-5p transcript levels during myogenic differentiation. Manipulation of miR-199a-5p expression in human primary myoblasts and myotubes resulted in dramatic changes in cellular size, proliferation, and differentiation. MiR-199a-5p targets several myogenic cell proliferation and differentiation regulatory factors within the WNT signaling pathway, including FZD4, JAG1, and WNT2. Overexpression of miR-199a-5p in the muscles of transgenic zebrafish resulted in abnormal myofiber disruption and sarcolemmal membrane detachment, pericardial edema, and lethality. Together, these studies identify miR-199a-5p as a potential regulator of myogenesis through suppression of WNT-signaling factors that act to balance myogenic cell proliferation and differentiation.
Skeletal Muscle | 2011
Matthew S. Alexander; Juan Carlos Casar; Norio Motohashi; Jennifer A. Myers; Iris Eisenberg; Robert T Gonzalez; Elicia Estrella; Peter B. Kang; Genri Kawahara; Louis M. Kunkel
BackgroundDuchenne muscular dystrophy (DMD) is an X-linked myopathy resulting from the production of a nonfunctional dystrophin protein. MicroRNA (miRNA) are small 21- to 24-nucleotide RNA that can regulate both individual genes and entire cell signaling pathways. Previously, we identified several mRNA, both muscle-enriched and inflammation-induced, that are dysregulated in the skeletal muscles of DMD patients. One particularly muscle-enriched miRNA, miR-486, is significantly downregulated in dystrophin-deficient mouse and human skeletal muscles. miR-486 is embedded within the ANKYRIN1(ANK1) gene locus, which is transcribed as either a long (erythroid-enriched) or a short (heart muscle- and skeletal muscle-enriched) isoform, depending on the cell and tissue types.ResultsInhibition of miR-486 in normal muscle myoblasts results in inhibited migration and failure to repair a wound in primary myoblast cell cultures. Conversely, overexpression of miR-486 in primary myoblast cell cultures results in increased proliferation with no changes in cellular apoptosis. Using bioinformatics and miRNA reporter assays, we have identified platelet-derived growth factor receptor β, along with several other downstream targets of the phosphatase and tensin homolog deleted on chromosome 10/AKT (PTEN/AKT) pathway, as being modulated by miR-486. The generation of muscle-specific transgenic mice that overexpress miR-486 revealed that miR-486 alters the cell cycle kinetics of regenerated myofibers in vivo, as these mice had impaired muscle regeneration.ConclusionsThese studies demonstrate a link for miR-486 as a regulator of the PTEN/AKT pathway in dystrophin-deficient muscle and an important factor in the regulation of DMD muscle pathology.
Journal of Clinical Investigation | 2014
Matthew S. Alexander; Juan Carlos Casar; Norio Motohashi; Natassia M. Vieira; Iris Eisenberg; Jamie L. Marshall; Molly J. Gasperini; Angela Lek; Jennifer A. Myers; Elicia Estrella; Peter B. Kang; Frederic Shapiro; Fedik Rahimov; Genri Kawahara; Jeffrey J. Widrick; Louis M. Kunkel
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, which results in dysfunctional signaling pathways within muscle. Previously, we identified microRNA-486 (miR-486) as a muscle-enriched microRNA that is markedly reduced in the muscles of dystrophin-deficient mice (Dmdmdx-5Cv mice) and in DMD patient muscles. Here, we determined that muscle-specific transgenic overexpression of miR-486 in muscle of Dmdmdx-5Cv mice results in reduced serum creatine kinase levels, improved sarcolemmal integrity, fewer centralized myonuclei, increased myofiber size, and improved muscle physiology and performance. Additionally, we identified dedicator of cytokinesis 3 (DOCK3) as a miR-486 target in skeletal muscle and determined that DOCK3 expression is induced in dystrophic muscles. DOCK3 overexpression in human myotubes modulated PTEN/AKT signaling, which regulates muscle hypertrophy and growth, and induced apoptosis. Furthermore, several components of the PTEN/AKT pathway were markedly modulated by miR-486 in dystrophin-deficient muscle. Skeletal muscle-specific miR-486 overexpression in Dmdmdx-5Cv animals decreased levels of DOCK3, reduced PTEN expression, and subsequently increased levels of phosphorylated AKT, which resulted in an overall beneficial effect. Together, these studies demonstrate that stable overexpression of miR-486 ameliorates the disease progression of dystrophin-deficient skeletal muscle.
Neurogenetics | 2012
Steven E. Boyden; Lane J. Mahoney; Genri Kawahara; Jennifer A. Myers; Satomi Mitsuhashi; Elicia Estrella; Anna R. Duncan; Friederike Dey; Elizabeth T. DeChene; Jessica M. Blasko-Goehringer; Carsten G. Bönnemann; Basil T. Darras; Hart G.W. Lidov; Ichizo Nishino; Alan H. Beggs; Louis M. Kunkel; Peter B. Kang
We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype. Affected subjects were compound heterozygous for missense mutations c.976T > C (p.C326R) and c.2320T > C (p.C774R). Screening the MEGF10 open reading frame in 190 patients with genetically unexplained myopathies revealed a heterozygous mutation, c.211C > T (p.R71W), in one additional subject with a similar clinical and histological presentation as the discovery family. All three mutations were absent from at least 645 genotyped unaffected control subjects. MEGF10 contains 17 atypical epidermal growth factor-like domains, each of which contains eight cysteine residues that likely form disulfide bonds. Both the p.C326R and p.C774R mutations alter one of these residues, which are completely conserved in vertebrates. Previous work showed that murine Megf10 is required for preserving the undifferentiated, proliferative potential of satellite cells, myogenic precursors that regenerate skeletal muscle in response to injury or disease. Here, knockdown of megf10 in zebrafish by four different morpholinos resulted in abnormal phenotypes including unhatched eggs, curved tails, impaired motility, and disorganized muscle tissue, corroborating the pathogenicity of the human mutations. Our data establish the importance of MEGF10 in human skeletal muscle and suggest satellite cell dysfunction as a novel myopathic mechanism.
BMC Musculoskeletal Disorders | 2007
Peter B. Kang; Chris A. Feener; Elicia Estrella; Marielle Thorne; Alexander J. White; Basil T. Darras; Anthony A. Amato; Louis M. Kunkel
BackgroundThere is a marked variation in clinical phenotypes that have been associated with mutations in FKRP, ranging from severe congenital muscular dystrophies to limb-girdle muscular dystrophy type 2I (LGMD2I).MethodsWe screened the FKRP gene in two cohorts totaling 87 patients with the LGMD phenotype.ResultsThe c.826C>A, p.L276I mutation was present in six patients and a compound heterozygote mutation in a seventh patient. Six patients had a mild LGMD2I phenotype, which resembles that of Becker muscular dystrophy. The other patient had onset before the age of 3 years, and thus may follow a more severe course.ConclusionThese findings suggest that LGMD2I may be common in certain North American populations. This diagnosis should be considered early in the evaluation of LGMD.
Pediatric Neurology | 2009
Leah A. Mallory; James G. Shaw; Stephanie L. Burgess; Elicia Estrella; Samuel Nurko; Tyler M. Burpee; Michael S. D. Agus; Basil T. Darras; Louis M. Kunkel; Peter B. Kang
Congenital myasthenic syndrome is difficult to diagnose, especially in the neonate when classic myasthenic signs may not be present. Congenital myasthenic syndrome with episodic apnea is a rare cause of recurrent apnea in infancy. We present an infant with nine severe episodes of apnea in her first 6 months who underwent a prolonged evaluation before ptosis was evident, leading to a diagnosis of choline acetyltransferase deficiency, a form of congenital myasthenic syndrome. Midazolam appeared to resolve the apnea on five occasions. The diagnosis was supported by edrophonium testing and repetitive nerve stimulation. Mutation analysis demonstrated compound heterozygous p.T354M and p.A557T mutations, the latter of which is novel. The patients respiratory status stabilized on pyridostigmine, and she is ambulatory at age 3 years. Pyridostigmine is the primary therapy for choline acetyltransferase deficiency, but the efficacy of midazolam during this patients episodes of apnea is interesting, and warrants further study.
Journal of Genetic Counseling | 2015
Nikkola Carmichael; Judith Tsipis; Gail Windmueller; Leslie Mandel; Elicia Estrella
The pediatric diagnostic odyssey is a period of uncertainty and emotional turmoil for families, often characterized by multiple minor medical procedures (such as venipuncture) that children may find distressing. Interventions to reduce distress are rarely offered, despite evidence that this is crucial both for avoiding anticipatory anxiety before future procedures and for improving healthcare compliance in adulthood. We interviewed ten mothers of children with neuromuscular disorders, asking about their perceptions of their child’s experiences with different medical procedures, the emotional impact of the diagnostic odyssey, implications of obtaining a diagnosis, and interactions with healthcare providers. We coded interviews in ATLAS.ti (version 7.0) based on a priori and emergent themes, and analyzed them based on the principles of interpretive description. We found that predicting and assessing children’s reactions to procedures is challenging; parents reported non-invasive procedures such as x-rays were distressing for some children, and that providers did not detect subtle indicators of distress. Parents valued obtaining a diagnosis because it validated their concerns, enabled planning for the child’s future healthcare needs, and allowed access to established support networks. This study suggests that healthcare providers can improve the experience of the diagnostic odyssey by validating family concerns and connecting them to support services that are available without a diagnosis.
Neuromuscular Disorders | 2013
Satomi Mitsuhashi; Steven E. Boyden; Elicia Estrella; Takako I. Jones; Fedik Rahimov; Basil T. Darras; Anthony A. Amato; Rebecca D. Folkerth; Peter L. Jones; Louis M. Kunkel; Peter B. Kang
FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family.
Muscle & Nerve | 2010
Peter B. Kang; Hart G.W. Lidov; Alexander J. White; Matthew Mitchell; Anuradha Balasubramanian; Elicia Estrella; Richard R. Bennett; Basil T. Darras; Frederic Shapiro; Barbara Bambach; Joanne Kurtzberg; Emanuela Gussoni; Louis M. Kunkel
We report a boy who received two allogeneic stem cell transplantations from umbilical cord donors to treat chronic granulomatous disease (CGD). The CGD was cured after the second transplantation, but 2.5 years later he was diagnosed with Duchenne muscular dystrophy (DMD). Examinations of his DNA, muscle tissue, and myoblast cultures derived from muscle tissue were performed to determine whether any donor dystrophin was being expressed. The boy was found to have a large‐scale deletion on the X chromosome that spanned the loci for CYBB and DMD. The absence of dystrophin led to muscle histology characteristic of DMD. Analysis of myofibers demonstrated no definite donor cell engraftment. This case suggests that umbilical cord–derived hematopoietic stem cell transplantation will not be efficacious in the therapy of DMD without additional interventions that induce engraftment of donor cells in skeletal muscle. Muscle Nerve, 2010
Cell Stem Cell | 2016
Matthew S. Alexander; Anete Rozkalne; Alessandro Colletta; Janelle M. Spinazzola; Samuel K. Johnson; Fedik Rahimov; Hui Meng; Michael W. Lawlor; Elicia Estrella; Louis M. Kunkel; Emanuela Gussoni
Cell-surface markers for prospective isolation of stem cells from human skeletal muscle have been difficult to identify. Such markers would be powerful tools for studying satellite cell function during homeostasis and in pathogenesis of diseases such as muscular dystrophies. In this study, we show that the tetraspanin KAI/CD82 is an excellent marker for prospectively isolating stem cells from human fetal and adult skeletal muscle. Human CD82+ muscle cells robustly engraft into a mouse model of muscular dystrophy. shRNA knockdown of CD82 in myogenic cells reduces myoblast proliferation, suggesting it is functionally involved in muscle homeostasis. CD82 physically interacts with alpha7beta1 integrin (α7β1-ITG) and with α-sarcoglycan, a member of the Dystrophin-Associated Glycoprotein Complex (DAPC), both of which have been linked to muscular dystrophies. Consistently, CD82 expression is decreased in Duchenne muscular dystrophy patients. Together, these findings suggest that CD82 function may be important for muscle stem cell function in muscular disorders.