Élida Mara Leite Rabelo
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Élida Mara Leite Rabelo.
Nature Genetics | 2014
Yat T. Tang; Xin Gao; Bruce A. Rosa; Sahar Abubucker; Kymberlie Hallsworth-Pepin; John Martin; Rahul Tyagi; Esley Heizer; Xu Zhang; Veena Bhonagiri-Palsikar; Patrick Minx; Wesley C. Warren; Qi Wang; Bin Zhan; Peter J. Hotez; Paul W. Sternberg; Annette Dougall; Soraya Gaze; Jason Mulvenna; Javier Sotillo; Shoba Ranganathan; Élida Mara Leite Rabelo; Richard Wilson; Philip L. Felgner; Jeffrey M. Bethony; John M. Hawdon; Robin B. Gasser; Alex Loukas; Makedonka Mitreva
The hookworm Necator americanus is the predominant soil-transmitted human parasite. Adult worms feed on blood in the small intestine, causing iron-deficiency anemia, malnutrition, growth and development stunting in children, and severe morbidity and mortality during pregnancy in women. We report sequencing and assembly of the N. americanus genome (244 Mb, 19,151 genes). Characterization of this first hookworm genome sequence identified genes orchestrating the hookworms invasion of the human host, genes involved in blood feeding and development, and genes encoding proteins that represent new potential drug targets against hookworms. N. americanus has undergone a considerable and unique expansion of immunomodulator proteins, some of which we highlight as potential treatments against inflammatory diseases. We also used a protein microarray to demonstrate a postgenomic application of the hookworm genome sequence. This genome provides an invaluable resource to boost ongoing efforts toward fundamental and applied postgenomic research, including the development of new methods to control hookworm and human immunological diseases.
PLOS ONE | 2011
Jeronimo C. Ruiz; Vívian D'Afonseca; Artur Silva; Amjad Ali; Anne Cybelle Pinto; Anderson Rodrigues dos Santos; Aryanne A. M. C. Rocha; Débora O. Lopes; Fernanda Alves Dorella; Luis G. C. Pacheco; Marcília Pinheiro da Costa; Meritxell Zurita Turk; Núbia Seyffert; Pablo M. R. O. Moraes; Siomar de Castro Soares; Sintia Almeida; Thiago Luiz de Paula Castro; Vinicius Augusto Carvalho de Abreu; Eva Trost; Jan Baumbach; Andreas Tauch; Maria Paula Cruz Schneider; John Anthony McCulloch; Louise Teixeira Cerdeira; Rommel Thiago Jucá Ramos; Adhemar Zerlotini; Anderson J. Dominitini; Daniela M. Resende; Elisângela Monteiro Coser; Luciana Márcia Oliveira
Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.
PLOS Neglected Tropical Diseases | 2010
Cinzia Cantacessi; Makedonka Mitreva; Aaron R. Jex; Neil D. Young; Bronwyn E. Campbell; Ross S. Hall; Maria A. Doyle; Stuart A. Ralph; Élida Mara Leite Rabelo; Shoba Ranganathan; Paul W. Sternberg; Alex Loukas; Robin B. Gasser
BACKGROUND The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses. METHODOLOGY/PRINCIPAL FINDINGS A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%); most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins) were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins) or amino acid metabolism (e.g., asparagine t-RNA synthetase). CONCLUSIONS This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human hookworm, A. duodenale, for both fundamental and applied purposes, including the prevalidation of anti-hookworm drug targets.
International Journal for Parasitology | 2000
Glória Regina Franco; Analina F. Valadão; Vasco Azevedo; Élida Mara Leite Rabelo
Schistosoma are dioecious digenetic trematodes carrying a large (270 Mb) genome. Gaining knowledge about the genome of these parasites is of importance for the understanding of their biology, mechanisms of drug resistance and antigenic variation that determine escape from the hosts immune system. This review will provide an update on the Schistosoma Gene Discovery Program, which is part of the Schistosoma Genome Project created in 1992. One of the main objectives of this program is the discovery and characterisation of new genes of Schistosoma mansoni and Schistosoma japonicum in an attempt to search for new targets for drugs and vaccine development. The success of the Schistosoma Gene Discovery Program is demonstrated by the number of catalogued genes, that now reaches 15 to 20% of the full gene complement of its genome.
Parasitology | 1999
Steven Williams; David A. Johnston; Martin Aslett; LouAnn Bierwert; Mark Blaxter; Jennifer Daub; Jeremy M. Foster; Mehul Ganatra; David B. Guiliano; Susan Haynes; Kunthala Jayaraman; Ibrahim H. Kamal; K. Kannan; Sandra J. Laney; Wen Li; Michelle Lizotte-Waniewski; Wenhong Lu; Nithyakalyani Raghavan; Reda M. R. Ramzy; R. V. Rao; Lori Saunders; Alan L. Scott; Barton E. Slatko; Taniawati Supali; Jennifer Ware; Vasco Azevedo; Paul J. Brindley; Guilherme Correa De Oliviera; Zheng Feng; Glória Regina Franco
Genome projects for the parasitic helminths Brugia malayi (a representative filarial nematode) and Schistosoma were initiated in 1995 by the World Health Organization with the ultimate objectives of identifying new vaccine candidates and drug targets and of developing low resolution genome maps. Because no genetic maps are available, and very few genes have been characterized from either parasite group, the first goal of both Initiatives has been to catalogue new genes for future placement on chromosome and physical maps. These genes have been identified by the expressed sequence tag (EST) approach, utilising cDNA libraries constructed from diverse life cycle stages. To date, the Initiatives have deposited over 16,000 Brugia ESTs and nearly 8000 Schistosoma ESTs in Genbanks dbEST database, corresponding to 6000 and over 3600 genes respectively (33% of Brugias estimated gene compliment, 18-24% of that of Schistosoma). Large fragment, genomic libraries have been constructed in BAC and YAC vectors for studies of genomic organization and for physical and chromosome mapping, and public, hypertext genomic databases have been established to facilitate data access. We present a summary of progress within the helminth genome initiatives and give several examples of important gene discoveries and future applications of these data.
Molecular and Biochemical Parasitology | 1999
Túlio M. Santos; David A. Johnston; Vasco Azevedo; Ian Ridgers; Mercedes F. Martinez; Gláucia B. Marotta; Rogério Luciano dos Santos; Sergio Fonseca; J. Miguel Ortega; Élida Mara Leite Rabelo; Mohamed Saber; Hanem Ahmed; Mahmoud H. Romeih; Glória Regina Franco; David Rollinson; Sérgio D.J. Pena
ESTs constitute rapid and informative tools with which to study gene-expression profiles of the diverse stages of the schistosome life cycle. Following a comprehensive EST study of adult worms, analysis has now targeted the cercaria, the parasite larval form responsible for infection of the vertebrate host. Two Schistosoma mansoni cercarial cDNA libraries were examined and partial sequence obtained from 957 randomly selected clones. On the basis of database searches, 551 (57.6%) ESTs generated had no homologs in the public databases whilst 308 (32.2%) were putatively identified, totaling 859 informative ESTs. The remaining 98 (10.2%) were uninformative ESTs (ribosomal RNA and non-coding mitochondrial sequences). By clustering analysis we have identified 453 different genes. The most common sequences in both libraries represented Sm8 calcium binding protein (8% of ESTs), fructose-1,6-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, cytochrome oxidase subunit 1, ATP guanidine kinase and triose phosphate isomerase. One hundred and nineteen identified genes were sorted into 11 functional categories, with genes associated with energy metabolism being the most abundant (13%) and diverse. The diversity and abundance of genes associated with the transcription/translation machinery and with regulatory/signaling functions were also marked. A paramyosin transcript was identified, indicating that this gene is not exclusively expressed in adult worms and sporocysts (as had been suggested previously). The possible physiological relevance to cercariae of the presence of transcripts with homology to calcium binding proteins of the EF-hand superfamily, Gq-coupled rhodopsin photoreceptor, rod phosphodiesterase 8 subunit and peripheral-type benzodiazepine receptor is discussed.
Veterinary Parasitology | 2011
Júlia A.G. Silveira; Élida Mara Leite Rabelo; Múcio Flávio Barbosa Ribeiro
Intraerythrocytic protozoan species of the genera Theileria and Babesia are known to infect both wild and domestic animals, and both are transmitted by hard-ticks of the family Ixodidae. The prevalences of hemoprotozoa and ectoparasites in 15 free-living Mazama gouazoubira, two captive M. gouazoubira and four captive Blastocerus dichotomus from the State of Minas Gerais, Brazil, have been determined through the examination of blood smears and the use of nested polymerase chain reaction (nPCR). The cervid population was inspected for the presence of ticks and any specimens encountered were identified alive under the stereomicroscope. Blood samples were collected from all 21 animals, following which blood smears were prepared, subjected to quick Romanowsky staining and examined under the optical microscope. DNA was extracted with the aid of commercial kits from cervid blood samples and from tick salivary glands. The nPCR assay comprised two amplification reactions: the first was conducted using primers specific for a 1700 bp segment of the 18S rRNA gene of Babesia and Theileria species, whilst the second employed primers designed to amplify a common 420 bp Babesia 18S rRNA fragment identified by aligning sequences from Babesia spp. available at GenBank. The ticks Amblyomma cajennense, Rhipicephalus microplus and Dermacentor nitens were identified in various of the cervids examined. Of the animals investigated, 71.4% (15/21) were infected with hemoprotozoa, including Theileria cervi (47.6%), Theileria sp. (14.3%), Babesia bovis (4.8%) and Babesia bigemina (4.8%). However, only one of the infected wild cervids exhibited accentuated anaemia (PCV=17%). This is first report concerning the occurrence of Theileria spp. in Brazilian cervids.
Research in Veterinary Science | 2009
L.M. Costa-Júnior; Múcio Flávio Barbosa Ribeiro; K. Rembeck; Élida Mara Leite Rabelo; M. Zahler-Rinder; Jörg Hirzmann; Kurt Pfister; L.M.F. Passos
This epidemiological survey on canine babesiosis was carried out in three distinct rural regions (Lavras, Belo Horizonte and Nanuque) of the State of Minas Gerais, Brazil. Ticks and blood samples were collected during a dry season (Lavras, n=92; Belo Horizonte, n=50; Nanuque, n=102) and the subsequent rainy season (Lavras, n=71; Belo Horizonte, n=28; Nanuque, n=66) from dogs living on farms. Plasma samples were analyzed by the indirect fluorescent antibody test for detection of anti-Babesia canis vogeli antibodies. DNA was extracted from blood of serologically positive dogs and molecular characterization of Babesia species was performed. Rhipicephalus sanguineus, Amblyomma cajennense and Boophilus microplus were the tick species identified in all regions. In Lavras, in addition to those tick species, A. tigrinum and A. ovale were also identified. The most prevalent tick species was A. cajennense (35.3%), followed by R. sanguineus (19%) and B. microplus (4.0%). Dogs living in Nanuque region were more heavily infested with ticks than dogs living in Belo Horizonte and Lavras regions. The overall frequency of anti-B. c. vogeli antibodies in the canine population in rural areas of Minas Gerais was 28.7%, with prevalence rates of 49.0% in Nanuque, 34.0% in Belo Horizonte and 3.3% in Lavras. The age of the animals and tick infestation were associated with seroprevalence of B. c. vogeli. The sequence analysis showed that B. c. vogeli was the only Babesia species present in all three regions. This study showed different rates of prevalence and incidence of canine babesiosis among the three rural regions sampled in Minas Gerais State. The results point to the importance of canine babesiosis in rural areas and to the need for further studies related to its transmission and maintenance in nature.
Acta Tropica | 2016
Luis Fernando Viana Furtado; Ana Cristina Passos de Paiva Bello; Élida Mara Leite Rabelo
Helminth parasites cause significant morbidity and mortality in endemic countries. Given the severity of symptoms that helminths may elicit in the host, intervention with prophylactic and therapeutic measures is imperative. Treatment with benzimidazoles is the most widely used means of combatting these parasites. However, widespread use of these drugs can select for drug-resistant parasite strains. In this review, we approach the problem of benzimidazole resistance in helminths in both humans and animals, focusing on the properties of the drug, the molecular mechanisms of drug resistance and how resistance is diagnosed.
Ticks and Tick-borne Diseases | 2013
Júlia A.G. Silveira; Élida Mara Leite Rabelo; Ana Cristyna Reis Lacerda; Paulo André Lima Borges; Walfrido Moraes Tomas; Aiesca Oliveira Pellegrin; Renata G.P. Tomich; Múcio Flávio Barbosa Ribeiro
Hemoparasites were surveyed in 60 free-living pampas deer Ozotoceros bezoarticus from the central area of the Pantanal, known as Nhecolândia, State of Mato Grosso do Sul, Brazil, through the analysis of nested PCR assays and nucleotide sequencing. Blood samples were tested for Babesia/Theileria, Anaplasma spp., and Trypanosoma spp. using nPCR assays and sequencing of the 18S rRNA, msp4, ITS, and cathepsin L genes. The identity of each sequence was confirmed by comparison with sequences from GenBank using BLAST software. Forty-six (77%) pampas deer were positive for at least one hemoparasite, according to PCR assays. Co-infection occurred in 13 (22%) animals. Based on the sequencing results, 29 (48%) tested positive for A. marginale. Babesia/Theileria were detected in 23 (38%) samples, and according to the sequencing results 52% (12/23) of the samples were similar to T. cervi, 13% (3/23) were similar to Babesia bovis, and 9% (2/23) were similar to B. bigemina. No samples were amplified with the primers for T. vivax, while 11 (18%) were amplified with the ITS primers for T. evansi. The results showed pampas deer to be co-infected with several hemoparasites, including species that may cause serious disease in cattle. Pampas deer is an endangered species in Brazil, and the consequences of these infections to their health are poorly understood.
Collaboration
Dive into the Élida Mara Leite Rabelo's collaboration.
Rodrigo Rodrigues Cambraia de Miranda
Universidade Federal de Minas Gerais
View shared research outputs