Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elie Marcheteau is active.

Publication


Featured researches published by Elie Marcheteau.


Journal of Experimental Medicine | 2015

VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors

Thibault Voron; Orianne Colussi; Elie Marcheteau; Simon Pernot; Mevyn Nizard; Anne-Laure Pointet; Sabrina Latreche; Sonia Bergaya; Nadine Benhamouda; Corinne Tanchot; Christian Stockmann; Pierre Combe; Anne Berger; Franck Zinzindohoue; Hideo Yagita; Eric Tartour; Julien Taieb; Magali Terme

VEGF-A production in the tumor microenvironment enhances expression of PD-1 and other inhibitory checkpoints involved with CD8+ T cell exhaustion, which can be reversed with anti-VEGF/VEGFR treatment.


Blood | 2011

A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens.

Hélène Péré; Yves Montier; Jagadeesh Bayry; Françoise Quintin-Colonna; Nathalie Merillon; Estelle Dransart; Cécile Badoual; Alain Gey; Patrice Ravel; Elie Marcheteau; Frédéric Batteux; Federico Sandoval; Olivier Adotevi; Christopher Chiu; Sylvie Garcia; Corinne Tanchot; Yu-Chun Lone; Luís Carlos de Souza Ferreira; Brad H. Nelson; Douglas Hanahan; Wolf H. Fridman; Ludger Johannes; Eric Tartour

Regulatory T cells (Tregs) may impede cancer vaccine efficacy in hematologic malignancies and cancer. CCR4 antagonists, an emergent class of Treg inhibitor, have been shown to block recruitment of Tregs mediated by CCL22 and CCL17. Our aim was to demonstrate the ability of a CCR4 antagonist (a small chemical molecule identified in silico) when combined with vaccines to break peripheral tolerance controlled by Tregs, a prerequisite for the induction of CD8(+) T cells against self Ags. Immunization of transgenic or normal mice expressing tumor-associated self Ags (Her2/neu, OVA, gp100) with a CCR4 antagonist combined with various vaccines led to the induction of effector CD8(+) T cells and partial inhibition of tumor growth expressing self Ags in both prophylactic and therapeutic settings. The CCR4 antagonist was more efficient than cyclophosphamide to elicit anti-self CD8(+) T cells. We also showed that the population of Tregs expressing CCR4 corresponded to memory (CD44(high)) and activated (ICOS(+)) Tregs, an important population to be targeted to modulate Treg activity. CCR4 antagonist represents a competitive class of Treg inhibitor able to induce functional anti-self CD8(+) T cells and tumor growth inhibition when combined with vaccines. High expression of CCR4 on human Tregs also supports the clinical development of this strategy.


Frontiers in Oncology | 2014

Control of the Immune Response by Pro-Angiogenic Factors

Thibault Voron; Elie Marcheteau; Simon Pernot; Orianne Colussi; Eric Tartour; Julien Taieb; Magali Terme

The progressive conversion of normal cells into cancer cells is characterized by the acquisition of eight hallmarks. Among these criteria, the capability of the cancer cell to avoid the immune destruction has been noted. Thus, tumors develop mechanisms to become invisible to the immune system, such as the induction of immunosuppressive cells, which are able to inhibit the development of an efficient immune response. Molecules produced in the tumor microenvironment are involved in the occurrence of an immunosuppressive microenvironment. Recently, it has been shown that vascular endothelial growth factor A (VEGF-A) exhibits immunosuppressive properties in addition to its pro-angiogenic activities. VEGF-A can induce the accumulation of immature dendritic cells, myeloid-derived suppressor cells, regulatory T cells, and inhibit the migration of T lymphocytes to the tumor. Other pro-angiogenic factors such as placental growth factor (PlGF) could also participate in tumor-induced immunosuppression, but only few works have been performed on this point. Here, we review the impact of pro-angiogenic factors (especially VEGF-A) on immune cells. Anti-angiogenic molecules, which target VEGF-A/VEGFR axis, have been developed in the last decades and are commonly used to treat cancer patients. These drugs have anti-angiogenic properties but can also counteract the tumor-induced immunosuppression. Based on these immunomodulatory properties, anti-angiogenic molecules could be efficiently associated with immunotherapeutic strategies in preclinical models. These combinations are currently under investigation in cancer patients.


OncoImmunology | 2012

Comprehensive analysis of current approaches to inhibit regulatory T cells in cancer

Hélène Péré; Corinne Tanchot; Jagadeesh Bayry; Magali Terme; Julien Taieb; Cécile Badoual; Olivier Adotevi; Nathalie Merillon; Elie Marcheteau; Ve´ronique Quillien; Claire Banissi; Alain Carpentier; Federico Sandoval; Mevyn Nizard; Françoise Quintin-Colonna; Guido Kroemer; Wolf H. Fridman; Laurence Zitvogel; Ste´phane Oudard; Eric Tartour

CD4+CD25+Foxp3+ regulatory T cells (Treg) have emerged as a dominant T cell population inhibiting anti-tumor effector T cells. Initial strategies used for Treg-depletion (cyclophosphamide, anti-CD25 mAb…) also targeted activated T cells, as they share many phenotypic markers. Current, ameliorated approaches to inhibit Treg aim to either block their function or their migration to lymph nodes and the tumor microenvironment. Various drugs originally developed for other therapeutic indications (anti-angiogenic molecules, tyrosine kinase inhibitors,etc) have recently been discovered to inhibit Treg. These approaches are expected to be rapidly translated to clinical applications for therapeutic use in combination with immunomodulators.


Clinical & Developmental Immunology | 2012

Modulation of immunity by antiangiogenic molecules in cancer.

Magali Terme; Orianne Colussi; Elie Marcheteau; Corinne Tanchot; Eric Tartour; Julien Taieb

In the last decades a new class of therapeutic drugs have been developed that block tumor angiogenesis. These antiangiogenic molecules, which target VEGF or VEGFR, PDGFR, and c-kit, can act not only on endothelial cells but also on immune cells. Some antiangiogenic molecules inhibit the development of immunosuppressive mechanisms developed by the tumors to escape the immune system (such as regulatory T cells, myeloid-derived suppressor cells, and immunosuppressive cytokines). These immunomodulatory effects must be characterized in detail to enable a better prescription of these treatments. In this paper we will focus on the impact of anti-angiogenic drugs on immunosuppression and their potential combination with immunotherapeutic strategies. Interestingly, immune parameters or their modulation during treatment could serve as potential biomarkers of response or resistance to anti-angiogenic therapies.


World Journal of Gastroenterology | 2014

Colorectal cancer and immunity: what we know and perspectives.

Simon Pernot; Magali Terme; Thibault Voron; Orianne Colussi; Elie Marcheteau; Eric Tartour; Julien Taieb

Strong evidence supports the concept of immunosurveillance and immunoediting in colorectal cancer. In particular, the density of T CD8⁺ and CD45⁺ lymphocyte infiltration was recently shown to have a better prognostic value than the classic tumor node metastasis classification factor. Other immune subsets, as macrophages, natural killer cells or unconventionnal lymphocytes, seem to play an important role. Induction of regulatory T cells (Tregs) or immunosuppressive molecules such as PD-1 or CTLA-4 and downregulation of antigen-presenting molecules are major escape mechanisms to antitumor immune response. The development of these mechanisms is a major obstacle to the establishment of an effective immune response, but also to the use of immunotherapy. Although immunotherapy is not yet routinely used in colorectal cancer, we now know that most treatments used (chemotherapy and biotherapy) have immunomodulatory effects, such as induction of immunogenic cell death by chemotherapy, inhibition of immunosuppression by antiangiogenic agents, and antibody-dependent cytotoxicity induced by cetuximab. Finally, many immunotherapy strategies are being developed and tested in phase I to III clinical trials. The most promising strategies are boosting the immune system with cytokines, inhibition of immunoregulatory checkpoints, vaccination with vectorized antigens, and adoptive cell therapy. Comprehension of antitumor immune response and combination of the different approaches of immunotherapy may allow the use of effective immunotherapy for treatment of colorectal cancer in the near future.


Nature Communications | 2017

Induction of resident memory T cells enhances the efficacy of cancer vaccine

Mevyn Nizard; Hélène Roussel; Mariana O. Diniz; Soumaya Karaki; Thi Tran; Thibault Voron; Estelle Dransart; Federico Sandoval; Marc Riquet; Bastien Rance; Elie Marcheteau; Elizabeth Fabre; Marion Mandavit; Magali Terme; Charlotte Blanc; Jean-Baptiste Escudié; Laure Gibault; Françoise Le Pimpec Barthes; Clémence Granier; Luís Carlos de Souza Ferreira; Cécile Badoual; Ludger Johannes; Eric Tartour

Tissue-resident memory T cells (Trm) represent a new subset of long-lived memory T cells that remain in tissue and do not recirculate. Although they are considered as early immune effectors in infectious diseases, their role in cancer immunosurveillance remains unknown. In a preclinical model of head and neck cancer, we show that intranasal vaccination with a mucosal vector, the B subunit of Shiga toxin, induces local Trm and inhibits tumour growth. As Trm do not recirculate, we demonstrate their crucial role in the efficacy of cancer vaccine with parabiosis experiments. Blockade of TFGβ decreases the induction of Trm after mucosal vaccine immunization, resulting in the lower efficacy of cancer vaccine. In order to extrapolate this role of Trm in humans, we show that the number of Trm correlates with a better overall survival in lung cancer in multivariate analysis. The induction of Trm may represent a new surrogate biomarker for the efficacy of cancer vaccine. This study also argues for the development of vaccine strategies designed to elicit them.


Journal of Immunology | 2016

IL-15 Trans-Signaling with the Superagonist RLI Promotes Effector/Memory CD8+ T Cell Responses and Enhances Antitumor Activity of PD-1 Antagonists

Mélanie Desbois; Pauline Le Vu; Clélia Coutzac; Elie Marcheteau; Coralie Béal; Magali Terme; Alain Gey; Sébastien Morisseau; Géraldine Teppaz; Lisa Boselli; Yannick Jacques; David Bechard; Eric Tartour; Lydie Cassard; Nathalie Chaput

Tumors with the help of the surrounding environment facilitate the immune suppression in patients, and immunotherapy can counteract this inhibition. Among immunotherapeutic strategies, the immunostimulatory cytokine IL-15 could represent a serious candidate for the reactivation of antitumor immunity. However, exogenous IL-15 may have a limited impact on patients with cancer due to its dependency on IL-15Rα frequently downregulated in cancer patients. In this work, we studied the antitumor activity of the IL-15 superagonist receptor-linker–IL-15 (RLI), designed to bypass the need of endogenous IL-15Rα. RLI consists of human IL-15 covalently linked to the human IL-15Rα sushi+ domain. In a mouse model of colorectal carcinoma, RLI as a stand-alone treatment could limit tumor outgrowth only when initiated at an early time of tumor development. At a later time, RLI was not effective, coinciding with the strong accumulation of terminally exhausted programmed cell death-1 (PD-1)high T cell Ig mucin-3+ CD8+ T cells, suggesting that RLI was not able to reactivate terminally exhausted CD8+ T cells. Combination with PD-1 blocking Ab showed synergistic activity with RLI, but not with IL-15. RLI could induce a greater accumulation of memory CD8+ T cells and a stronger effector function in comparison with IL-15. Ex vivo stimulation of tumor-infiltrated lymphocytes from 16 patients with renal cell carcinoma demonstrated 56% of a strong tumor-infiltrated lymphocyte reactivation with the combination anti–PD-1/RLI compared with 43 and 6% with RLI or anti–PD-1, respectively. Altogether, this work provides evidence that the sushi–IL-15Rα/IL-15 fusion protein RLI enhances antitumor activity of anti–PD-1 treatment and is a promising approach to stimulate host immunity.


Nature Communications | 2017

TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma

Florie Bertrand; Anne Montfort; Elie Marcheteau; Caroline Imbert; Julia Gilhodes; Thomas Filleron; Philippe Rochaix; Nathalie Andrieu-Abadie; Thierry Levade; Nicolas Meyer; Céline Colacios; Bruno Ségui

Antibodies against programmed cell death-1 (PD-1) have considerably changed the treatment for melanoma. However, many patients do not display therapeutic response or eventually relapse. Moreover, patients treated with anti-PD-1 develop immune-related adverse events that can be cured with anti-tumor necrosis factor α (TNF) antibodies. Whether anti-TNF antibodies affect the anti-cancer immune response remains unknown. Our recent work has highlighted that TNFR1-dependent TNF signalling impairs the accumulation of CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) in mouse melanoma. Herein, our results indicate that TNF or TNFR1 blockade synergizes with anti-PD-1 on anti-cancer immune responses towards solid cancers. Mechanistically, TNF blockade prevents anti-PD-1-induced TIL cell death as well as PD-L1 and TIM-3 expression. TNF expression positively correlates with expression of PD-L1 and TIM-3 in human melanoma specimens. This study provides a strong rationale to develop a combination therapy based on the use of anti-PD-1 and anti-TNF in cancer patients.Most melanoma patients do not respond to anti-PD1 therapy. Here, the authors show that TNFα blockade synergizes with anti-PD-1 by preventing anti-PD-1-induced CD8+ T cell death and TIM-3 expression on such cells.


Cancer Research | 2013

Abstract 2830: Mucosal imprinting of vaccine induced-CD8+T cells is crucial to inhibit mucosal tumors.

Federico Sandoval; Mevyn Nizard; Magali Terme; Cécile Badoual; Michel-Francis Bureau; Olivier Clément; Elie Marcheteau; Alain Gey; Estelle Dransart; Françoise Quintin-Colonna; Gwenhael Autret; T. C. Wu; Wolf H. Fridman; Ludger Johannes; Eric Tartour

Although many human cancers are located in mucosal sites, most cancer vaccines are tested against subcutaneous tumors in preclinical models. The utility of preferentially inducing an anti-tumor immune response in the mucosal anatomic site of tumors has never been addressed. We therefore wondered whether mucosa-specific homing instructions to the immune system might influence mucosal tumor outgrowth. For this purpose, we set up original orthotopic models of head and neck and lung cancers monitored by magnetic resonance imaging or luciferase based in vivo optical imaging and vaccine based on a non replicative delivery system, the B subunit of Shiga toxin (STxB) as mucosal vector which has previously been shown to target antigen to dendritic cells. We showed that the growth of orthotopic head and neck or lung cancers expressing the E7 protein from HPV16 was only inhibited, when a cancer vaccine was delivered by the intranasal (i.n) mucosal and not the intramuscular (i.m) route. This anti-tumor effect was dependent on mucosal CD8+T cells as : i) Only a vaccine composed of STxB coupled to an E7 derived polypeptide (STxB-E7), but not the free E7 polypeptide elicited mucosal CD8+T cells. This mucosal induction of anti-E7 CD8+T cells, but not the systemic (spleen) specific anti-E7 CD8+T cells correlated with mucosal tumor protection. ii) A greater mucosal tumor infiltration of CD8+T cells was detected 7 days after tumor graft in mice that had been previously intranasally immunized with STxB-E7, than in mice vaccinated by the i.m. route. iii) CD8+T cell-depleted mice vaccinated with STxB-E7 by the i.n. route died before 20 days, whereas mice survived more than 6 months without CD8 depletion. As control, both routes of vaccine administration controlled the growth of subcutaneous tumors and elicited anti-E7 specific CD8+T cells in the spleen. To explain this finding, we demonstrated that only i.n. vaccination elicited mucosal specific CD8+T cells expressing the mucosal integrin CD49a. Blockade of CD49a decreased intratumoral CD8+T cell infiltration and the efficacy of cancer vaccine on mucosal tumor. We then showed that after intranasal vaccination, only dendritic cell from lung parenchyma, but not from spleen induced the expression of CD49a on co-cultured specific CD8+T cells. Tumor-infiltrating lymphocytes from human mucosal lung cancer also expressed CD49a at higher levels than TIL from non mucosal tumors, supporting the relevance and possible extrapolation of these results in humans. We thus identified a link between the route of vaccination and the induction of a mucosal homing program on induced CD8+T cells controlling their trafficking with a direct application on the efficacy of cancer vaccine to control mucosal tumors. Citation Format: Federico Sandoval, Mevyn Nizard, Magali Terme, Cecile Badoual, Michel-Francis Bureau, Olivier Clement, Elie Marcheteau, Alain Gey, Estelle Dransart, Francoise Quintin-Colonna, Gwenhael Autret, Tzyy-Choou Wu, Wolf H. Fridman, Ludger Johannes, Eric Tartour. Mucosal imprinting of vaccine induced-CD8+T cells is crucial to inhibit mucosal tumors. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2830. doi:10.1158/1538-7445.AM2013-2830

Collaboration


Dive into the Elie Marcheteau's collaboration.

Top Co-Authors

Avatar

Magali Terme

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Julien Taieb

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Cécile Badoual

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Simon Pernot

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Eric Tartour

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Federico Sandoval

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Mevyn Nizard

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Orianne Colussi

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Thibault Voron

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Corinne Tanchot

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge