Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elie Maza is active.

Publication


Featured researches published by Elie Maza.


Plant Physiology | 2012

Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components

Cristina Barsan; Mohamed Zouine; Elie Maza; Wanping Bian; Isabel Egea; Michel Rossignol; David Bouyssie; Carole Pichereaux; Eduardo Purgatto; Mondher Bouzayen; Alain Latché; Jean-Claude Pech

A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.


Electronic Journal of Statistics | 2007

Semi-parametric estimation of shifts

Fabrice Gamboa; Jean-Michel Loubes; Elie Maza

We observe a large number of functions differing from each other only by a translation parameter. While the main pattern is unknown, we propose to estimate the shift parameters using


Plant Physiology | 2016

Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato

Mingchun Liu; Bruna Lima Gomes; Isabelle Mila; Eduardo Purgatto; Lázaro Eustáquio Pereira Peres; Pierre Frasse; Elie Maza; Mohamed Zouine; Jean-Paul Roustan; Mondher Bouzayen; Julien Pirrello

M


Journal of Experimental Botany | 2015

Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance

Massimiliano Corso; Alessandro Vannozzi; Elie Maza; Nicola Vitulo; Franco Meggio; Andrea Pitacco; Andrea Telatin; Michela D’Angelo; Erika Feltrin; Alfredo Simone Negri; Bhakti Prinsi; Giorgio Valle; Angelo Ramina; Mondher Bouzayen; Claudio Bonghi; Margherita Lucchin

-estimators. Fourier transform enables to transform this statistical problem into a semi-parametric framework. We study the convergence of the estimator and provide its asymptotic behavior. Moreover, we use the method in the applied case of velocity curve forecasting.


Communicative & Integrative Biology | 2013

Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments: A matter of relative size of studied transcriptomes.

Elie Maza; Pierre Frasse; Pavel Senin; Mondher Bouzayen; Mohamed Zouine

A small subset of ethylene response factor genes emerge as main actors in controlling fruit ripening via both ethylene-dependent and RIN/NOR-mediated mechanisms. Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening.


Frontiers in Plant Science | 2016

Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries.

Massimiliano Corso; Alessandro Vannozzi; F. Ziliotto; Mohamed Zouine; Elie Maza; Tommaso T. Nicolato; Nicola Vitulo; Franco Meggio; Giorgio Valle; Mondher Bouzayen; Maren Müller; Sergi Munné-Bosch; Margherita Lucchin; Claudio Bonghi

Highlights Drought tolerance in the M4 grapevine rootstock genotype could be associated with a higher capability to counteract oxidative stresses by enhancing the accumulation of resveratrol in roots.


Journal of Experimental Botany | 2014

Genome-wide identification, phylogenetic analysis, expression profiling, and protein–protein interaction properties of TOPLESS gene family members in tomato

Yanwei Hao; Xinyu Wang; Xian Li; Carole Bassa; Isabelle Mila; Corinne Audran; Elie Maza; Zhengguo Li; Mondher Bouzayen; Benoît van der Rest; Mohamed Zouine

In recent years, RNA-Seq technologies became a powerful tool for transcriptome studies. However, computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. In particular, it is known that the choice of a normalization procedure leads to a great variability in results of differential gene expression analysis. The present study compares the most widespread normalization procedures and proposes a novel one aiming at removing an inherent bias of studied transcriptomes related to their relative size. Comparisons of the normalization procedures are performed on real and simulated data sets. Real RNA-Seq data sets analyses, performed with all the different normalization methods, show that only 50% of significantly differentially expressed genes are common. This result highlights the influence of the normalization step on the differential expression analysis. Real and simulated data sets analyses give similar results showing 3 different groups of procedures having the same behavior. The group including the novel method named “Median Ratio Normalization” (MRN) gives the lower number of false discoveries. Within this group the MRN method is less sensitive to the modification of parameters related to the relative size of transcriptomes such as the number of down- and upregulated genes and the gene expression levels. The newly proposed MRN method efficiently deals with intrinsic bias resulting from relative size of studied transcriptomes. Validation with real and simulated data sets confirmed that MRN is more consistent and robust than existing methods.


Statistics and Computing | 2011

Non parametric estimation of the structural expectation of a stochastic increasing function

Jean-François Dupuy; Jean-Michel Loubes; Elie Maza

In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.


Frontiers in Genetics | 2016

In Papyro Comparison of TMM (edgeR), RLE (DESeq2), and MRN Normalization Methods for a Simple Two-Conditions-Without-Replicates RNA-Seq Experimental Design.

Elie Maza

Members of the TOPLESS gene family emerged recently as key players in gene repression in several mechanisms, especially in auxin perception. The TOPLESS genes constitute, in ‘higher-plant’ genomes, a small multigenic family comprising four to 11 members. In this study, this family was investigated in tomato, a model plant for Solanaceae species and fleshy fruits. Six open reading frames predicted to encode topless-like proteins (SlTPLs) containing the canonical domains (LisH, CTLH, and two WD40 repeats) were identified in the tomato genome. Nuclear localization was confirmed for all members of the SlTPL family with the exception SlTPL6, which localized at the cytoplasm and was excluded from the nucleus. SlTPL genes displayed distinctive expression patterns in different tomato organs, with SlTPL1 showing the highest levels of transcript accumulation in all tissues tested except in ripening fruit where SlTPL3 and SlTPL4 were the most prominently expressed. To gain insight into the specificity of the different TOPLESS paralogues, a protein–protein interaction map between TOPLESS and auxin/indole-3-acetic acid (Aux/IAA) proteins was built using a yeast two-hybrid approach. The PPI map enabled the distinction of two patterns: TOPLESS isoforms interacting with the majority of Aux/IAA, and isoforms with limited capacity for interaction with these protein partners. Interestingly, evolutionary analyses of the TOPLESS gene family revealed that the highly expressed isoforms (SlTPL1, SlTPL3, and SlTPL4) corresponded to the three TPL-related genes undergoing the strongest purifying selection, while the selection was much weaker for SlTPL6, which was expressed at a low level and encoded a protein lacking the capacity to interact with Aux/IAAs.


Computational Statistics & Data Analysis | 2014

A robust algorithm for template curve estimation based on manifold embedding

Chloé Dimeglio; Santiago Gallón; Jean-Michel Loubes; Elie Maza

This article introduces a non parametric warping model for functional data. When the outcome of an experiment is a sample of curves, data can be seen as realizations of a stochastic process, which takes into account the variations between the different observed curves. The aim of this work is to define a mean pattern which represents the main behaviour of the set of all the realizations. So, we define the structural expectation of the underlying stochastic function. Then, we provide empirical estimators of this structural expectation and of each individual warping function. Consistency and asymptotic normality for such estimators are proved.

Collaboration


Dive into the Elie Maza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Michel Loubes

Institut de Mathématiques de Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Gamboa

Institut de Mathématiques de Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge