Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elie R. Chemaly is active.

Publication


Featured researches published by Elie R. Chemaly.


Circulation | 2009

Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy.

Lennart Suckau; Henry Fechner; Elie R. Chemaly; Stefanie Krohn; Lahouaria Hadri; Jens Kockskämper; Dirk Westermann; Egbert Bisping; Hung Ly; Xiaomin Wang; Yoshiaki Kawase; Jiqiu Chen; Lifan Liang; Isaac Sipo; Roland Vetter; Stefan Weger; Jens Kurreck; Volker A. Erdmann; Carsten Tschöpe; Burkert Pieske; Djamel Lebeche; Heinz-Peter Schultheiss; Roger J. Hajjar; Wolfgang Poller

Background— RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. Here, we report on targeted RNAi for the treatment of heart failure, an important disorder in humans that results from multiple causes. Successful treatment of heart failure is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban, a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy uses regulatory RNAs to achieve its effect. Methods and Results— We describe structural requirements to obtain high RNAi activity from adenoviral and adeno-associated virus (AAV9) vectors and show that an adenoviral short hairpin RNA vector (AdV-shRNA) silenced phospholamban in cardiomyocytes (primary neonatal rat cardiomyocytes) and improved hemodynamics in heart-failure rats 1 month after aortic root injection. For simplified long-term therapy, we developed a dimeric cardiotropic adeno-associated virus vector (rAAV9-shPLB) to deliver RNAi activity to the heart via intravenous injection. Cardiac phospholamban protein was reduced to 25%, and suppression of sacroplasmic reticulum Ca2+ ATPase in the HF groups was rescued. In contrast to traditional vectors, rAAV9 showed high affinity for myocardium but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (left ventricular end-diastolic pressure, dp/dtmin, and &tgr;) and systolic (fractional shortening) functional parameters to normal ranges. The massive cardiac dilation was normalized, and cardiac hypertrophy, cardiomyocyte diameter, and cardiac fibrosis were reduced significantly. Importantly, no evidence was found of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusions— Our data show for the first time the high efficacy of an RNAi therapeutic strategy in a cardiac disease.


Gene Therapy | 2007

Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo

Julieta Palomeque; Elie R. Chemaly; Peter Colosi; Jennifer Wellman; Shangzhen Zhou; F del Monte; Roger J. Hajjar

Recombinant adeno-associated (AAV) viruses have unique properties, which make them ideal vectors for gene transfer targeting the myocardium. Numerous serotypes of AAV have been identified with variable tropisms towards cardiac tissue. In the present study, we investigated the time course of expression of eight different AAV serotypes in rat myocardium and the nature of the immunity against these serotypes. We first assessed whether neutralizing antibodies (NAb) were present for any of the serotype in the rats. We injected 100 μl of each AAV 1–8 serotype (1012 DNAse resistant particles/ml), encoding LacZ gene, into the apical wall of rat myocardium. At 1, 4, 12 and 24 weeks after gene delivery, the animals were killed and β-galactosidase (β-gal) activity was assessed by luminometry. Additionally, LacZ genomic copies and AAV capsids copies were measured through standard polymerase chain reaction analysis and cryo-sections from the area of viral injection were stained for X-gal detection at the same time points. No NAbs were detected against any of AAV serotypes. At all the time points studied, AAV1, 6 and 8 demonstrated the highest efficiency in transducing rat hearts in vivo. Parallel to the results with β-gal activity, the highest levels LacZ and AAV DNA genomic copies were with AAV1, 6 and 8. The positive X-gal staining depicted by these serotypes confirmed these results. These results indicate that among the various AAV serotypes, AAV1, 6 and 8 have differential tropism for the heart unaffected by pre-existing NAb in the rat. Although AAV 1 and 6 vectors induced rapid and robust expression and reach a plateau at 4 weeks, AAV 8 continued increasing until the end of the study. AAV 2, 5 and 7 vectors were slower to induce expression of the reporter gene, but did reach levels of expression comparable to AAV1 and AAV6 vectors after 3 months.


Expert Opinion on Biological Therapy | 2010

Sarcoplasmic reticulum Ca 2+ ATPase as a therapeutic target for heart failure

Larissa Lipskaia; Elie R. Chemaly; Lahouaria Hadri; Anne-Marie Lompré; Roger J. Hajjar

The cardiac isoform of the sarco/endoplasmic reticulum Ca2+ATPase (SERCA2a) plays a major role in controlling excitation/contraction coupling. In both experimental and clinical heart failure, SERCA2a expression is significantly reduced which leads to abnormal Ca2+ handling and deficient contractility. A large number of studies in isolated cardiac myocytes and in small and large animal models of heart failure showed that restoring SERCA2a expression by gene transfer corrects the contractile abnormalities and improves energetics and electrical remodeling. Following a long line of investigation, a clinical trial is underway to restore SERCA2a expression in patients with heart failure using adeno-associated virus type 1. This review addresses the following issues regarding heart failure gene therapy: i) new insights on calcium regulation by SERCA2a; ii) SERCA2a as a gene therapy target in animal models of heart failure; iii) advances in the development of viral vectors and gene delivery; and iv) clinical trials on heart failure using SERCA2a. This review focuses on the new advances in SERCA2a- targeted gene therapy made in the last three years. In conclusion, SERCA2a is an important therapeutic target in various cardiovascular disorders. Ongoing clinical gene therapy trials will provide answers on its safety and applicability.


Cell Death and Disease | 2012

JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure

Antoine H. Chaanine; Dongtak Jeong; Lifan Liang; Elie R. Chemaly; Kenneth Fish; Ronald E. Gordon; Roger J. Hajjar

Bcl-2 E1B 19-KDa interacting protein 3 (BNIP3) is a mitochondrial death and mitophagy marker, which is involved in inducing cardiac remodeling post myocardial infarction. In this study, we show that BNIP3 expression increases in stressed cardiomyocytes in vitro and in response to pressure overload in vivo, and that its transcription is directly related to JNK activity. BNIP3 expression gradually increased in the first weeks after pressure overload and peaked at the heart failure stage. Ultrastructurally, the mitochondrial area was inversely proportional to BNIP3 expression. Both JNK and AKT activities increased with pressure overload; however, JNK signaling dominated over AKT signaling for the activation of the transcription factor FOXO3a and for the transcription of its effector, BNIP3. 3-methyladenine attenuated JNK signaling and significantly decreased BNIP3 expression and reversed cardiac remodeling in heart failure. Ultrastructurally, the mitochondrial area was significantly increased in the 3-methyladenine group compared with placebo. Moreover, adenoviral gene delivery of dominant negative JNK in a rat model of pressure overload hypertrophy abolished the increase in BNIP3 expression in response to pressure overload. These results suggest that JNK signaling is a critical modulator of the transcription factor FOXO3a driving the expression of its effector, BNIP3, in heart failure and that JNK, through BNIP3, induces mitochondrial apoptosis and mitophagy.


Journal of Clinical Investigation | 2014

Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome

Jason R. Cook; Luca Carta; Ludovic Benard; Elie R. Chemaly; Emily Chiu; Satish Rao; Thomas G. Hampton; Peter Yurchenco; Kevin D. Costa; Roger J. Hajjar; Francesco Ramirez

Patients with Marfan syndrome (MFS), a multisystem disorder caused by mutations in the gene encoding the extracellular matrix (ECM) protein fibrillin 1, are unusually vulnerable to stress-induced cardiac dysfunction. The prevailing view is that MFS-associated cardiac dysfunction is the result of aortic and/or valvular disease. Here, we determined that dilated cardiomyopathy (DCM) in fibrillin 1-deficient mice is a primary manifestation resulting from ECM-induced abnormal mechanosignaling by cardiomyocytes. MFS mice displayed spontaneous emergence of an enlarged and dysfunctional heart, altered physical properties of myocardial tissue, and biochemical evidence of chronic mechanical stress, including increased angiotensin II type I receptor (AT1R) signaling and abated focal adhesion kinase (FAK) activity. Partial fibrillin 1 gene inactivation in cardiomyocytes was sufficient to precipitate DCM in otherwise phenotypically normal mice. Consistent with abnormal mechanosignaling, normal cardiac size and function were restored in MFS mice treated with an AT1R antagonist and in MFS mice lacking AT1R or β-arrestin 2, but not in MFS mice treated with an angiotensin-converting enzyme inhibitor or lacking angiotensinogen. Conversely, DCM associated with abnormal AT1R and FAK signaling was the sole abnormality in mice that were haploinsufficient for both fibrillin 1 and β1 integrin. Collectively, these findings implicate fibrillin 1 in the physiological adaptation of cardiac muscle to elevated workload.


Journal of Biological Chemistry | 2011

Resistin Promotes Cardiac Hypertrophy via the AMP-activated Protein Kinase/Mammalian Target of Rapamycin (AMPK/mTOR) and c-Jun N-terminal Kinase/Insulin Receptor Substrate 1 (JNK/IRS1) Pathways

Soojeong Kang; Elie R. Chemaly; Roger J. Hajjar; Djamel Lebeche

Resistin has been suggested to be involved in the development of diabetes and insulin resistance. We recently reported that resistin is expressed in diabetic hearts and promotes cardiac hypertrophy; however, the mechanisms underlying this process are currently unknown. Therefore, we wanted to elucidate the mechanisms associated with resistin-induced cardiac hypertrophy and myocardial insulin resistance. Overexpression of resistin using adenoviral vector in neonatal rat ventricular myocytes was associated with inhibition of AMP-activated protein kinase (AMPK) activity, activation of tuberous sclerosis complex 2/mammalian target of rapamycin (mTOR) pathway, and increased cell size, [3H]leucine incorporation (i.e. protein synthesis) and mRNA expression of the hypertrophic marker genes, atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Activation of AMPK with 5-aminoimidazole-4-carbozamide-1-β-d-ribifuranoside or inhibition of mTOR with rapamycin or mTOR siRNA attenuated these resistin-induced changes. Furthermore, resistin increased serine phosphorylation of insulin receptor substrate (IRS1) through the activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal Kinase (JNK) pathway, a module known to stimulate insulin resistance. Inhibition of JNK (with JNK inhibitor SP600125 or using dominant-negative JNK) reduced serine 307 phosphorylation of IRS1. Resistin also stimulated the activation of p70S6K, a downstream kinase target of mTOR, and increased phosphorylation of the IRS1 serine 636/639 residues, whereas treatment with rapamycin reduced the phosphorylation of these residues. Interestingly, these in vitro signaling pathways were also operative in vivo in ventricular tissues from adult rat hearts overexpressing resistin. These data demonstrate that resistin induces cardiac hypertrophy and myocardial insulin resistance, possibly via the AMPK/mTOR/p70S6K and apoptosis signal-regulating kinase 1/JNK/IRS1 pathways.


American Journal of Pathology | 2010

Effects of CXCR4 Gene Transfer on Cardiac Function After Ischemia-Reperfusion Injury

Jiqiu Chen; Elie R. Chemaly; Lifan Liang; Changwon Kho; Ahyoung Lee; Jaeho Park; Perry Altman; Alison D. Schecter; Roger J. Hajjar; Sima T. Tarzami

Acute coronary occlusion is the leading cause of death in the Western world. There is an unmet need for the development of treatments to limit the extent of myocardial infarction (MI) during the acute phase of occlusion. Recently, investigators have focused on the use of a chemokine, CXCL12, the only identified ligand for CXCR4, as a new therapeutic modality to recruit stem cells to individuals suffering from MI. Here, we examined the effects of overexpression of CXCR4 by gene transfer on MI. Adenoviruses carrying the CXCR4 gene were injected into the rat heart one week before ligation of the left anterior descending coronary artery followed by 24 hours reperfusion. Cardiac function was assessed by echocardiography couple with 2,3,5-Triphenyltetrazolium chloride staining to measure MI size. In comparison with control groups, rats receiving Ad-CXCR4 displayed an increase in infarct area (13.5% +/- 4.1%) and decreased fractional shortening (38% +/- 5%). Histological analysis revealed a significant increase in CXCL12 and tumor necrosis factor-alpha expression in ischemic area of CXCR4 overexpressed hearts. CXCR4 overexpression was associated with increased influx of inflammatory cells and enhanced cardiomyocyte apoptosis in the infarcted heart. These data suggest that in our model overexpressing CXCR4 appears to enhance ischemia/reperfusion injury possibly due to enhanced recruitment of inflammatory cells, increased tumor necrosis factor-alpha production, and activation of cell death/apoptotic pathways.


American Journal of Hypertension | 2002

Aortic pulse pressure and extent of coronary artery disease in percutaneous transluminal coronary angioplasty candidates.

François Philippe; Elie R. Chemaly; Jacques Blacher; Jean-Jacques Mourad; Alain Dibie; Fabrice Larrazet; François Laborde; Michel E. Safar

BACKGROUND Pulse pressure and aortic stiffness are both predictors of coronary artery disease. Whether these parameters are directly related to coronary structural alterations has never been studied. METHODS From September 1999 to September 2000, the following data were collected from 99 eligible patients: invasive intra-aortic systolic and diastolic blood pressures (BP), extent of coronary artery disease, cardiovascular risk factors, and the incidence of angiographically documented restenosis after coronary angioplasty. RESULTS In the study population, independent determinants of aortic pulse pressure were age, gender, aortic mean BP, heart rate, and extent of coronary artery disease (r2 = 0.57, P < .0001). In univariate analysis, invasive aortic, but not noninvasive brachial, mean pressure (P = .017) and pulse pressure (P = .027) were significantly associated to the extent of coronary artery disease. In a multiple regression analysis, only male gender (P = .013) and the level of aortic pulse pressure (P = .023) were independently associated with the extent of coronary heart disease. Restenosis was angiographically documented in 11 patients (11%). There was a borderline significant association of restenosis to aortic mean BP (P = .05) and to a past history of multiple previous angioplasties (P = .03). CONCLUSIONS In this study, aortic pulse pressure was a significant risk factor for the extent of coronary artery disease. There was only a borderline significant association of restenosis to the steady, but not pulsatile, component of aortic BP in the stent era.


Circulation Research | 2012

Stem Cell Factor Gene Transfer Promotes Cardiac Repair After Myocardial Infarction via In Situ Recruitment and Expansion of c-kit+ Cells

Elisa Yaniz-Galende; Jiqiu Chen; Elie R. Chemaly; Lifan Liang; Jean Sebastien Hulot; LaTronya T. McCollum; Teresa Arias; Valentin Fuster; Krisztina Zsebo; Roger J. Hajjar

Rationale: There is growing evidence that the myocardium responds to injury by recruiting c-kit+ cardiac progenitor cells to the damage tissue. Even though the ability of exogenously introducing c-kit+ cells to injured myocardium has been established, the capability of recruiting these cells through modulation of local signaling pathways by gene transfer has not been tested. Objective: To determine whether stem cell factor gene transfer mediates cardiac regeneration in a rat myocardial infarction model, through survival and recruitment of c-kit+ progenitors and cell-cycle activation in cardiomyocytes, and explore the mechanisms involved. Methods and Results: Infarct size, cardiac function, cardiac progenitor cells recruitment, fibrosis, and cardiomyocyte cell-cycle activation were measured at different time points in controls (n=10) and upon stem cell factor gene transfer (n=13) after myocardial infarction. We found a regenerative response because of stem cell factor overexpression characterized by an enhancement in cardiac hemodynamic function: an improvement in survival; a reduction in fibrosis, infarct size and apoptosis; an increase in cardiac c-kit+ progenitor cells recruitment to the injured area; an increase in cardiomyocyte cell-cycle activation; and Wnt/&bgr;-catenin pathway induction. Conclusions: Stem cell factor gene transfer induces c-kit+ stem/progenitor cell expansion in situ and cardiomyocyte proliferation, which may represent a new therapeutic strategy to reverse adverse remodeling after myocardial infarction.


Annals of the New York Academy of Sciences | 2012

Molecular targets in heart failure gene therapy: current controversies and translational perspectives

Victor F Kairouz; Larissa Lipskaia; Roger J. Hajjar; Elie R. Chemaly

Use of gene therapy for heart failure is gaining momentum as a result of the recent successful completion of phase II of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, which showed clinical safety and efficacy of an adeno‐associated viral vector expressing sarco‐endoplasmic reticulum calcium ATPase (SERCA2a). Resorting to gene therapy allows the manipulation of molecular targets not presently amenable to pharmacologic modulation. This short review focuses on the molecular targets of heart failure gene therapy that have demonstrated translational potential. At present, most of these targets are related to calcium handling in the cardiomyocyte. They include SERCA2a, phospholamban, S100A1, ryanodine receptor, and the inhibitor of the protein phosphatase 1. Other targets related to cAMP signaling are reviewed, such as adenylyl cyclase. MicroRNAs are emerging as novel therapeutic targets and convenient vectors for gene therapy, particularly in heart disease. We propose a discussion of recent advances and controversies in key molecular targets of heart failure gene therapy.

Collaboration


Dive into the Elie R. Chemaly's collaboration.

Top Co-Authors

Avatar

Roger J. Hajjar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Djamel Lebeche

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lifan Liang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jiqiu Chen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lahouaria Hadri

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yoshiaki Kawase

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge