Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elin Grundberg is active.

Publication


Featured researches published by Elin Grundberg.


Nature | 2011

Human metabolic individuality in biomedical and pharmaceutical research

Karsten Suhre; So-Youn Shin; Ann-Kristin Petersen; Robert P. Mohney; David Meredith; Brigitte Wägele; Elisabeth Altmaier; Panos Deloukas; Jeanette Erdmann; Elin Grundberg; Christopher J. Hammond; Martin Hrabé de Angelis; Gabi Kastenmüller; Anna Köttgen; Florian Kronenberg; Massimo Mangino; Christa Meisinger; Thomas Meitinger; Hans-Werner Mewes; Michael V. Milburn; Cornelia Prehn; Johannes Raffler; Janina S. Ried; Werner Römisch-Margl; Nilesh J. Samani; Kerrin S. Small; H.-Erich Wichmann; Guangju Zhai; Thomas Illig; Tim D. Spector

Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10–60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn’s disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.


Nature Genetics | 2009

Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies

Fernando Rivadeneira; Unnur Styrkarsdottir; Karol Estrada; Bjarni V. Halldórsson; Yi-Hsiang Hsu; J. Brent Richards; M. Carola Zillikens; Fotini K. Kavvoura; Najaf Amin; Yurii S. Aulchenko; L. Adrienne Cupples; Panagiotis Deloukas; Serkalem Demissie; Elin Grundberg; Albert Hofman; Augustine Kong; David Karasik; Joyce B. J. van Meurs; Ben A. Oostra; Tomi Pastinen; Huibert A. P. Pols; Gunnar Sigurdsson; Nicole Soranzo; Gudmar Thorleifsson; Unnur Thorsteinsdottir; Frances M. K. Williams; Scott G. Wilson; Yanhua Zhou; Stuart H. Ralston; Cornelia M. van Duijn

Bone mineral density (BMD) is a heritable complex trait used in the clinical diagnosis of osteoporosis and the assessment of fracture risk. We performed meta-analysis of five genome-wide association studies of femoral neck and lumbar spine BMD in 19,195 subjects of Northern European descent. We identified 20 BMD loci that reached genome-wide significance (GWS; P < 5 × 10−8), of which 13 map to regions not previously associated with this trait: 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 (CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 (FLJ42280), 11p11.2 (LRP4, ARHGAP1, F2), 11p14.1 (DCDC5), 11p15 (SOX6), 16q24 (FOXL1), 17q21 (HDAC5) and 17q12 (CRHR1). The meta-analysis also confirmed at GWS level seven known BMD loci on 1p36 (ZBTB40), 6q25 (ESR1), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11) and 18q21 (TNFRSF11A). The many SNPs associated with BMD map to genes in signaling pathways with relevance to bone metabolism and highlight the complex genetic architecture that underlies osteoporosis and variation in BMD.


Nature Genetics | 2012

Mapping cis- and trans-regulatory effects across multiple tissues in twins

Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


PLOS Genetics | 2012

Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population

Jordana T. Bell; Pei-Chien Tsai; Tsun-Po Yang; Ruth Pidsley; James Nisbet; Daniel Glass; Massimo Mangino; Guangju Zhai; Feng Zhang; Ana M. Valdes; So-Youn Shin; Emma Dempster; Robin M. Murray; Elin Grundberg; Åsa K. Hedman; Alexandra C. Nica; Kerrin S. Small; Emmanouil T. Dermitzakis; Mark I. McCarthy; Jonathan Mill; Tim D. Spector; Panos Deloukas

Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype–phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes.


Nature Genetics | 2014

An atlas of genetic influences on human blood metabolites.

So-Youn Shin; Eric Fauman; Ann-Kristin Petersen; Jan Krumsiek; Rita Santos; Jie Huang; Matthias Arnold; Idil Erte; Vincenzo Forgetta; Tsun-Po Yang; Klaudia Walter; Cristina Menni; Lu Chen; Louella Vasquez; Ana M. Valdes; Craig L. Hyde; Vicky Wang; Daniel Ziemek; Phoebe M. Roberts; Li Xi; Elin Grundberg; Melanie Waldenberger; J. Brent Richards; Robert P. Mohney; Michael V. Milburn; Sally John; Jeff Trimmer; Fabian J. Theis; John P. Overington; Karsten Suhre

Genome-wide association scans with high-throughput metabolic profiling provide unprecedented insights into how genetic variation influences metabolism and complex disease. Here we report the most comprehensive exploration of genetic loci influencing human metabolism thus far, comprising 7,824 adult individuals from 2 European population studies. We report genome-wide significant associations at 145 metabolic loci and their biochemical connectivity with more than 400 metabolites in human blood. We extensively characterize the resulting in vivo blueprint of metabolism in human blood by integrating it with information on gene expression, heritability and overlap with known loci for complex disorders, inborn errors of metabolism and pharmacological targets. We further developed a database and web-based resources for data mining and results visualization. Our findings provide new insights into the role of inherited variation in blood metabolic diversity and identify potential new opportunities for drug development and for understanding disease.


Nature Genetics | 2011

Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci

Jaspal S. Kooner; Danish Saleheen; Xueling Sim; Joban Sehmi; Weihua Zhang; Philippe Frossard; Latonya F. Been; Kee Seng Chia; Antigone S. Dimas; Neelam Hassanali; Tazeen H. Jafar; Jeremy B. M. Jowett; Xinzhong Li; Venkatesan Radha; Simon D. Rees; Fumihiko Takeuchi; Robin Young; Tin Aung; Abdul Basit; Manickam Chidambaram; Debashish Das; Elin Grundberg; Åsa K. Hedman; Zafar I. Hydrie; Muhammed Islam; Chiea Chuen Khor; Sudhir Kowlessur; Malene M. Kristensen; Samuel Liju; Wei-Yen Lim

We carried out a genome-wide association study of type-2 diabetes (T2D) in individuals of South Asian ancestry. Our discovery set included 5,561 individuals with T2D (cases) and 14,458 controls drawn from studies in London, Pakistan and Singapore. We identified 20 independent SNPs associated with T2D at P < 10−4 for testing in a replication sample of 13,170 cases and 25,398 controls, also all of South Asian ancestry. In the combined analysis, we identified common genetic variants at six loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2 and HNF4A) newly associated with T2D (P = 4.1 × 10−8 to P = 1.9 × 10−11). SNPs at GRB14 were also associated with insulin sensitivity (P = 5.0 × 10−4), and SNPs at ST6GAL1 and HNF4A were also associated with pancreatic beta-cell function (P = 0.02 and P = 0.001, respectively). Our findings provide additional insight into mechanisms underlying T2D and show the potential for new discovery from genetic association studies in South Asians, a population with increased susceptibility to T2D.


PLOS Genetics | 2011

The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.

Alexandra C. Nica; Leopold Parts; Daniel Glass; James Nisbet; Amy Barrett; Magdalena Sekowska; Mary E. Travers; Simon Potter; Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Veronique Bataille; Jordana T. Bell; Gabriela Surdulescu; Antigone S. Dimas; Catherine E. Ingle; Frank O. Nestle; Paola Di Meglio; Josine L. Min; Alicja Wilk; Christopher J. Hammond; Neelam Hassanali; Tsun-Po Yang; Stephen B. Montgomery; Steve O'Rahilly; Cecilia M. Lindgren; Krina T. Zondervan; Nicole Soranzo; Inês Barroso; Richard Durbin

While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis—MCTA) permits immediate replication of eQTLs using co-twins (93%–98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%–20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.


Nature Genetics | 2011

Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes

Kerrin S. Small; Åsa K. Hedman; Elin Grundberg; Alexandra C. Nica; Gudmar Thorleifsson; Augustine Kong; Unnur Thorsteindottir; So-Youn Shin; Hannah B Richards; Nicole Soranzo; Kourosh R. Ahmadi; Cecilia M. Lindgren; Kari Stefansson; Emmanouil T. Dermitzakis; Panos Deloukas; Tim D. Spector; Mark I. McCarthy

Genome-wide association studies have identified many genetic variants associated with complex traits. However, at only a minority of loci have the molecular mechanisms mediating these associations been characterized. In parallel, whereas cis regulatory patterns of gene expression have been extensively explored, the identification of trans regulatory effects in humans has attracted less attention. Here we show that the type 2 diabetes and high-density lipoprotein cholesterol–associated cis-acting expression quantitative trait locus (eQTL) of the maternally expressed transcription factor KLF14 acts as a master trans regulator of adipose gene expression. Expression levels of genes regulated by this trans-eQTL are highly correlated with concurrently measured metabolic traits, and a subset of the trans-regulated genes harbor variants directly associated with metabolic phenotypes. This trans-eQTL network provides a mechanistic understanding of the effect of the KLF14 locus on metabolic disease risk and offers a potential model for other complex traits.


American Journal of Human Genetics | 2013

Global Analysis of DNA Methylation Variation in Adipose Tissue from Twins Reveals Links to Disease-Associated Variants in Distal Regulatory Elements

Elin Grundberg; Eshwar Meduri; Johanna K. Sandling; Åsa K. Hedman; Sarah Keildson; Alfonso Buil; Stephan Busche; Wei Yuan; James Nisbet; Magdalena Sekowska; Alicja Wilk; Amy Barrett; Kerrin S. Small; Bing Ge; Maxime Caron; So-Youn Shin; Mark Lathrop; Emmanouil T. Dermitzakis; Mark I. McCarthy; Tim D. Spector; Jordana T. Bell; Panos Deloukas

Epigenetic modifications such as DNA methylation play a key role in gene regulation and disease susceptibility. However, little is known about the genome-wide frequency, localization, and function of methylation variation and how it is regulated by genetic and environmental factors. We utilized the Multiple Tissue Human Expression Resource (MuTHER) and generated Illumina 450K adipose methylome data from 648 twins. We found that individual CpGs had low variance and that variability was suppressed in promoters. We noted that DNA methylation variation was highly heritable (h(2)median = 0.34) and that shared environmental effects correlated with metabolic phenotype-associated CpGs. Analysis of methylation quantitative-trait loci (metQTL) revealed that 28% of CpGs were associated with nearby SNPs, and when overlapping them with adipose expression quantitative-trait loci (eQTL) from the same individuals, we found that 6% of the loci played a role in regulating both gene expression and DNA methylation. These associations were bidirectional, but there were pronounced negative associations for promoter CpGs. Integration of metQTL with adipose reference epigenomes and disease associations revealed significant enrichment of metQTL overlapping metabolic-trait or disease loci in enhancers (the strongest effects were for high-density lipoprotein cholesterol and body mass index [BMI]). We followed up with the BMI SNP rs713586, a cg01884057 metQTL that overlaps an enhancer upstream of ADCY3, and used bisulphite sequencing to refine this region. Our results showed widespread population invariability yet sequence dependence on adipose DNA methylation but that incorporating maps of regulatory elements aid in linking CpG variation to gene regulation and disease risk in a tissue-dependent manner.


American Journal of Human Genetics | 2009

Allele-Specific Chromatin Remodeling in the ZPBP2/GSDMB/ORMDL3 Locus Associated with the Risk of Asthma and Autoimmune Disease

Dominique J. Verlaan; Soizik Berlivet; Gary M. Hunninghake; Anne-Marie Madore; Mathieu Larivière; Sanny Moussette; Elin Grundberg; Tony Kwan; Manon Ouimet; Bing Ge; Rose Hoberman; Marcin Swiatek; Joana Dias; Kevin C. L. Lam; Vonda Koka; Eef Harmsen; Manuel Soto-Quiros; Lydiana Avila; Juan C. Celedón; Scott T. Weiss; Ken Dewar; Daniel Sinnett; Catherine Laprise; Benjamin A. Raby; Tomi Pastinen; Anna K. Naumova

Common SNPs in the chromosome 17q12-q21 region alter the risk for asthma, type 1 diabetes, primary biliary cirrhosis, and Crohn disease. Previous reports by us and others have linked the disease-associated genetic variants with changes in expression of GSDMB and ORMDL3 transcripts in human lymphoblastoid cell lines (LCLs). The variants also alter regulation of other transcripts, and this domain-wide cis-regulatory effect suggests a mechanism involving long-range chromatin interactions. Here, we further dissect the disease-linked haplotype and identify putative causal DNA variants via a combination of genetic and functional analyses. First, high-throughput resequencing of the region and genotyping of potential candidate variants were performed. Next, additional mapping of allelic expression differences in Yoruba HapMap LCLs allowed us to fine-map the basis of the cis-regulatory differences to a handful of candidate functional variants. Functional assays identified allele-specific differences in nucleosome distribution, an allele-specific association with the insulator protein CTCF, as well as a weak promoter activity for rs12936231. Overall, this study shows a common disease allele linked to changes in CTCF binding and nucleosome occupancy leading to altered domain-wide cis-regulation. Finally, a strong association between asthma and cis-regulatory haplotypes was observed in three independent family-based cohorts (p = 1.78 x 10(-8)). This study demonstrates the requirement of multiple parallel allele-specific tools for the investigation of noncoding disease variants and functional fine-mapping of human disease-associated haplotypes.

Collaboration


Dive into the Elin Grundberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Panos Deloukas

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Soranzo

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Tony Kwan

University of Victoria

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge