Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elin K. Esbjörner is active.

Publication


Featured researches published by Elin K. Esbjörner.


ACS Chemical Biology | 2010

ANS binding reveals common features of cytotoxic amyloid species

Benedetta Bolognesi; Janet R. Kumita; Teresa P. Barros; Elin K. Esbjörner; Leila M. Luheshi; Damian C. Crowther; Mark R. Wilson; Christopher M. Dobson; Giorgio Favrin; Justin J. Yerbury

Oligomeric assemblies formed from a variety of disease-associated peptides and proteins have been strongly associated with toxicity in many neurodegenerative conditions, such as Alzheimers disease. The precise nature of the toxic agents, however, remains still to be established. We show that prefibrillar aggregates of E22G (arctic) variant of the Abeta(1-42) peptide bind strongly to 1-anilinonaphthalene 8-sulfonate and that changes in this property correlate significantly with changes in its cytotoxicity. Moreover, we show that this phenomenon is common to other amyloid systems, such as wild-type Abeta(1-42), the I59T variant of human lysozyme and an SH3 domain. These findings are consistent with a model in which the exposure of hydrophobic surfaces as a result of the aggregation of misfolded species is a crucial and common feature of these pathogenic species.


Biochemistry | 2012

Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides.

Hanna Rydberg; Maria Matson; Helene L. Åmand; Elin K. Esbjörner; Bengt Nordén

Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view.


Molecular Pharmaceutics | 2010

Effects of PEGylation and acetylation of PAMAM dendrimers on DNA Binding, cytotoxicity and in vitro transfection efficiency

Kristina Fant; Elin K. Esbjörner; Alan Jenkins; Martin C. Grossel; Per Lincoln; Bengt Nordén

Poly(amidoamine) (PAMAM) dendrimers are promising multipotent gene delivery vectors, providing favorable DNA condensation properties also in combination with the possibility of conjugation of different targeting ligands to their surface. They have been used for transfection both in vitro and in vivo, but their application is currently somewhat limited due to inherent cytotoxicity. In this work we investigate how two types of surface modification, acetylation and PEGylation, affect the DNA binding characteristics, the cytotoxicity and the in vitro transfection efficiency of generation 4 and 5 PAMAM dendrimers. Particularly, we address how the morphology of DNA-dendrimer complexes, formed under low salt conditions, changes upon dilution in cell growth medium, an event that inevitably occurs before the complexes reach the cell surface in any transfection experiment. We find that acetylation and PEGylation essentially eliminates the inherent dendrimer cytotoxicity. However, the transfection efficiency of the modified dendrimers is lower than that of the corresponding unmodified dendrimers, which can be rationally understood by our observations that DNA is less condensed when complexed with these modified dendrimers. Although small DNA-dendrimer particles are formed, the availability for ethidium intercalation and nuclease degradation is significantly higher in the modified DNA-dendrimer complexes than in unmodified ones. Dilution in cell growth medium has a drastic effect on these electrostatically assembled complexes, resulting in increase in size and DNA availability. Our results strongly add to the notion that it is of importance to perform a biophysical characterization under conditions as close to the transfection situation as possible, to enable conclusions regarding structure-activity relations of gene delivery vectors.


Journal of the American Chemical Society | 2011

In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging.

Gabriele S. Kaminski Schierle; Sebastian van de Linde; Miklós Erdélyi; Elin K. Esbjörner; Teresa Klein; Eric Rees; Carlos W. Bertoncini; Christopher M. Dobson; Markus Sauer; Clemens F. Kaminski

Misfolding and aggregation of peptides and proteins is a characteristic of many neurodegenerative disorders, including Alzheimers disease (AD). In AD the β-amyloid peptide (Aβ) aggregates to form characteristic fibrillar structures, which are the deposits found as plaques in the brains of patients. We have used direct stochastic optical reconstruction microscopy, dSTORM, to probe the process of in situ Aβ aggregation and the morphology of the ensuing aggregates with a resolution better than 20 nm. We are able to distinguish different types of structures, including oligomeric assemblies and mature fibrils, and observe a number of morphological differences between the species formed in vitro and in vivo, which may be significant in the context of disease. Our data support the recent view that intracellular Aβ could be associated with Aβ pathogenicity in AD, although the major deposits are extracellular, and suggest that this approach will be widely applicable to studies of the molecular mechanisms of protein deposition diseases.


Biochemical and Biophysical Research Communications | 2008

Stimulated endocytosis in penetratin uptake: Effect of arginine and lysine

Helene L. Åmand; Kristina Fant; Bengt Nordén; Elin K. Esbjörner

Cell-penetrating peptides can deliver macromolecular cargo into cells and show promise as vectors for intracellular drug delivery. Internalization occurs predominantly via endocytosis, but the exact uptake mechanisms are not fully understood. We show quantitatively how penetratin, a 16-residue cationic peptide, stimulates fluid-phase endocytosis and triggers its own uptake into Chinese hamster ovarian cells, using a 70kDa dextran to indicate macropinocytosis. The total cellular endocytotic rate is significantly less affected and we therefore propose up-regulation of macropinocytosis to occur at the expense of other types of endocytosis. By comparing penetratin to its analogs PenArg and PenLys, enriched in arginines and lysines, respectively, we show how these side-chains contribute to uptake efficiency. The degree of peptide and dextran uptake follows similar patterns regarding peptide concentration and arginine/lysine content (PenArg>penetratin>PenLys), indicating that a high content of arginines is beneficial but not necessary for stimulating endocytosis.


Biochemistry | 2008

DNA condensation by PAMAM dendrimers: Self-assembly characteristics and effect on transcription

Kristina Fant; Elin K. Esbjörner; Per Lincoln; Bengt Nordén

Electrostatic shielding and steric blocking by histones are two significant factors that participate in the control of the local rates of transcription in chromatin. As a simple model system to determine how the degree of DNA condensation affects enzyme accessibility and gene expression, we have used generation 5 polyamidoamine (G5 PAMAM) cationic dendrimer particles (size 5.4 nm) as a synthetic histone model together with an in vitro transcription assay. The degree of compaction, conformation, and binding availability of the dendrimer-DNA complexes is characterized by linear and circular dichroism, dynamic light scattering, and competitive binding of ethidium. Using ultracentrifugation we are able to show explicitly, for the first time, that dendrimer particles bind to DNA in a highly cooperative manner, and that the dendrimer-induced condensation of the DNA strongly attenuates transcription. Two fractions with different properties can be identified: a low-density fraction which behaves very similar to uncondensed DNA and a high-density fraction which is condensed to a high extent and where binding availability and transcription are strongly reduced. Circular dichroism gives clues to the structure of the condensed DNA indicating long-range order between the helices such as in polymer-salt-induced cholesteric liquid crystalline domains, one possible shape being a toroidal structure. On the basis of the experimental data, we propose a model for the self-assembly of the dendrimer-DNA system.


Biochimica et Biophysica Acta | 2012

Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

Helene L. Åmand; Hanna Rydberg; Louise H. Fornander; Per Lincoln; Bengt Nordén; Elin K. Esbjörner

Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptides ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell.


Biochimica et Biophysica Acta | 2010

Dual functions of the human antimicrobial peptide LL-37-Target membrane perturbation and host cell cargo delivery

Xuan Zhang; Kamila Oglęcka; Staffan Sandgren; Mattias Belting; Elin K. Esbjörner; Bengt Nordén; Astrid Gräslund

The mechanisms behind target vs. host cell recognition of the human antimicrobial peptide LL-37 remain ill-defined. Here, we have investigated the membrane disruption capacity of LL-37 using large unilamellar vesicles (LUVs) composed of varying mixtures of POPC, POPG and cholesterol to mimic target and host membranes respectively. We show that LL-37 is unable to induce leakage of entrapped calcein from zwitterionic POPC LUVs, whereas leakage from LUVs partially composed of POPG is fast and efficient. In accordance with typical antimicrobial peptide behavior, cholesterol diminished LL-37 induced leakage. By using linear dichroism and flow oriented LUVs, we found that LL-37 orients with the axis of its induced α-helix parallel to the membrane surface in POPC:POPG (7:3) LUVs. In the same system, we also observed a time-dependent increase of the parallel α-helix LD signal on timescales corresponding to the leakage kinetics. The increased LD may be connected to a peptide translocation step, giving rise to mass balance across the membrane. This could end the leakage process before it is complete, similar to what we have observed. Confocal microscopy studies of eukaryotic cells show that LL-37 is able to mediate the cell delivery of non-covalently linked fluorescent oligonucleotides, in agreement with earlier studies on delivery of plasmid DNA (Sandgren et al., J. Biol. Chem. 279 (2004) 17951). These observations highlight the potential dual functions of LL-37 as an antimicrobial agent against bacterial target cells and a cell-penetrating peptide that can deliver nucleic acids into the host cells.


Chemistry & Biology | 2014

Direct Observations of Amyloid β Self-Assembly in Live Cells Provide Insights into Differences in the Kinetics of Aβ(1–40) and Aβ(1–42) Aggregation

Elin K. Esbjörner; Fiona T.S. Chan; Eric Rees; Miklós Erdélyi; Leila M. Luheshi; Carlos W. Bertoncini; Clemens F. Kaminski; Christopher M. Dobson; Gabriele S. Kaminski Schierle

Summary Insight into how amyloid β (Aβ) aggregation occurs in vivo is vital for understanding the molecular pathways that underlie Alzheimer’s disease and requires new techniques that provide detailed kinetic and mechanistic information. Using noninvasive fluorescence lifetime recordings, we imaged the formation of Aβ(1–40) and Aβ(1–42) aggregates in live cells. For both peptides, the cellular uptake via endocytosis is rapid and spontaneous. They are then retained in lysosomes, where their accumulation leads to aggregation. The kinetics of Aβ(1–42) aggregation are considerably faster than those of Aβ(1–40) and, unlike those of the latter peptide, show no detectable lag phase. We used superresolution fluorescence imaging to examine the resulting aggregates and could observe compact amyloid structures, likely because of spatial confinement within cellular compartments. Taken together, these findings provide clues as to how Aβ aggregation may occur within neurons.


Journal of Molecular Biology | 2013

Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages

Tim Guilliams; Farah El-Turk; Alexander K. Buell; Elizabeth ODay; Francesco A. Aprile; Elin K. Esbjörner; Michele Vendruscolo; Nunilo Cremades; Els Pardon; Lode Wyns; Mark E. Welland; Jan Steyaert; John Christodoulou; Christopher M. Dobson; Erwin De Genst

Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinsons disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation.

Collaboration


Dive into the Elin K. Esbjörner's collaboration.

Top Co-Authors

Avatar

Bengt Nordén

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Per Lincoln

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Lindberg

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fredrik Westerlund

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Helene L. Åmand

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emelie Lindahl Wesén

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina E.B. Caesar

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge