Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elin Thysell is active.

Publication


Featured researches published by Elin Thysell.


PLOS ONE | 2010

Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol.

Elin Thysell; Izabella Surowiec; Emma Hörnberg; Sead Crnalic; Anders Widmark; Annika I. Johansson; Pär Stattin; Anders Bergh; Thomas Moritz; Henrik Antti; Pernilla Wikström

Background Metastasis to the bone is one clinically important features of prostate cancer (PCa). Current diagnostic methods cannot predict metastatic PCa at a curable stage of the disease. Identification of metabolic pathways involved in the growth of bone metastases therefore has the potential to improve PCa prognostication as well as therapy. Methodology/Principal Findings Metabolomics was applied for the study of PCa bone metastases (n = 20) in comparison with corresponding normal bone (n = 14), and furthermore of malignant (n = 13) and benign (n = 17) prostate tissue and corresponding plasma samples obtained from patients with (n = 15) and without (n = 13) diagnosed metastases and from men with benign prostate disease (n = 30). This was done using gas chromatography-mass spectrometry for sample characterization, and chemometric bioinformatics for data analysis. Results were verified in a separate test set including metastatic and normal bone tissue from patients with other cancers (n = 7). Significant differences were found between PCa bone metastases, bone metastases of other cancers, and normal bone. Furthermore, we identified metabolites in primary tumor tissue and in plasma which were significantly associated with metastatic disease. Among the metabolites in PCa bone metastases especially cholesterol was noted. In a test set the mean cholesterol level in PCa bone metastases was 127.30 mg/g as compared to 81.06 and 35.85 mg/g in bone metastases of different origin and normal bone, respectively (P = 0.0002 and 0.001). Immunohistochemical staining of PCa bone metastases showed intense staining of the low density lipoprotein receptor and variable levels of the scavenger receptor class B type 1 and 3-hydroxy-3-methylglutaryl-coenzyme reductase in tumor epithelial cells, indicating possibilities for influx and de novo synthesis of cholesterol. Conclusions/Significance We have identified metabolites associated with PCa metastasis and specifically identified high levels of cholesterol in PCa bone metastases. Based on our findings and the previous literature, this makes cholesterol a possible therapeutic target for advanced PCa.


PLOS ONE | 2013

Characterization of prostate cancer bone metastases according to expression levels of steroidogenic enzymes and androgen receptor splice variants.

Emma Jernberg; Elin Thysell; Erik Bovinder Ylitalo; Stina Häggström Rudolfsson; Sead Crnalic; Anders Widmark; Anders Bergh; Pernilla Wikström

Background Intra-tumoral steroidogenesis and constitutive androgen receptor (AR) activity have been associated with castration-resistant prostate cancer (CRPC). This study aimed to examine if CRPC bone metastases expressed higher levels of steroid-converting enzymes than untreated bone metastases. Steroidogenic enzyme levels were also analyzed in relation to expression of constitutively active AR variants (AR-Vs) and to clinical and pathological variables. Methodology/Principal Findings Untreated, hormone-naïve (HN, n = 9) and CRPC bone metastases samples (n = 45) were obtained from 54 patients at metastasis surgery. Non-malignant and malignant prostate samples were acquired from 13 prostatectomy specimens. Transcript and protein levels were analyzed by real-time RT-PCR, immunohistochemistry and immunoblotting. No differences in steroidogenic enzyme levels were detected between CRPC and HN bone metastases. Significantly higher levels of SRD5A1, AKR1C2, AKR1C3, and HSD17B10 mRNA were however found in bone metastases than in non-malignant and/or malignant prostate tissue, while the CYP11A1, CYP17A1, HSD3B2, SRD5A2, and HSD17B6 mRNA levels in metastases were significantly lower. A sub-group of metastases expressed very high levels of AKR1C3, which was not due to gene amplification as examined by copy number variation assay. No association was found between AKR1C3 expression and nuclear AR staining, tumor cell proliferation or patient outcome after metastases surgery. With only one exception, high AR-V protein levels were found in bone metastases with low AKR1C3 levels, while metastases with high AKR1C3 levels primarily contained low AR-V levels, indicating distinct mechanisms behind castration-resistance in individual bone metastases. Conclusions/Significance Induced capacity of converting adrenal-gland derived steroids into more potent androgens was indicated in a sub-group of PC bone metastases. This was not associated with CRPC but merely with the advanced stage of metastasis. Sub-groups of bone metastases could be identified according to their expression levels of AKR1C3 and AR-Vs, which might be of relevance for patient response to 2nd line androgen-deprivation therapy.


International Journal of Cancer | 2007

SELDI-TOF MS versus prostate specific antigen analysis of prospective plasma samples in a nested case–control study of prostate cancer

Åsa Skytt; Elin Thysell; Pär Stattin; Ulf-Håkan Stenman; Henrik Antti; Pernilla Wikström

There is an urgent need for better biomarkers for detection of clinically significant prostate cancer (PCa). Recent studies suggest that surface enhanced laser desorption/ionization time‐of‐flight mass spectrometry (SELDI‐TOF MS) analysis of serum may provide diagnostic information. The aim of this study was to investigate if PCa cases could be identified by applying predefined SELDI‐TOF analysis conditions on prospectively, uniformly collected plasma samples from PCa cases and matched controls. Prospective samples from 387 incident PCa cases and an equal number of controls, matched for age and time for recruitment, were analyzed by SELDI‐TOF MS (IMAC30/Cu chip) and multivariate classification analysis. Prospective prostate specific antigen levels were subjected to ROC curve analysis giving an AUC of 0.87 for the total cohort with a median lag time between blood sampling and diagnosis of 6.1 years. No markers were found by SELDI‐TOF MS that significantly discriminated between cases and controls in the total cohort or in subanalysis of cases with less than 2 years between blood donation and diagnosis (n = 42). Cases with aggressive disease at the time of diagnosis who gave blood less than 4 years prior to diagnosis (n = 23) could however be separated from their controls (sensitivity 70%, specificity 83%) by a model based on SELDI‐TOF MS and OPLS‐DA data analysis. We were thus not able to confirm previous results with SELDI‐TOF MS identifying men with PCa from healthy individuals, but we report an optimal experimental set‐up for verification of markers for early detection of cancer in prospectively collected samples.


European Urology | 2017

Subgroups of castration-resistant prostate cancer bone metastases defined through an inverse relationship between androgen receptor activity and immune response

Erik Bovinder Ylitalo; Elin Thysell; Emma Jernberg; Marie Lundholm; Sead Crnalic; Lars Egevad; Pär Stattin; Anders Widmark; Anders Bergh; Pernilla Wikström

BACKGROUND Novel therapies for men with castration-resistant prostate cancer (CRPC) are needed, particularly for cancers not driven by androgen receptor (AR) activation. OBJECTIVES To identify molecular subgroups of PC bone metastases of relevance for therapy. DESIGN, SETTING, AND PARTICIPANTS Fresh-frozen bone metastasis samples from men with CRPC (n=40), treatment-naïve PC (n=8), or other malignancies (n=12) were characterized using whole-genome expression profiling, multivariate principal component analysis (PCA), and functional enrichment analysis. Expression profiles were verified by reverse transcription-polymerase chain reaction (RT-PCR) in an extended set of bone metastases (n=77) and compared to levels in malignant and adjacent benign prostate tissue from patients with localized disease (n=12). Selected proteins were evaluated using immunohistochemistry. A cohort of PC patients (n=284) diagnosed at transurethral resection with long follow-up was used for prognostic evaluation. RESULTS AND LIMITATIONS The majority of CRPC bone metastases (80%) was defined as AR-driven based on PCA analysis and high expression of the AR, AR co-regulators (FOXA1, HOXB13), and AR-regulated genes (KLK2, KLK3, NKX3.1, STEAP2, TMPRSS2); 20% were non-AR-driven. Functional enrichment analysis indicated high metabolic activity and low immune responses in AR-driven metastases. Accordingly, infiltration of CD3+ and CD68+ cells was lower in AR-driven than in non-AR-driven metastases, and tumor cell HLA class I ABC immunoreactivity was inversely correlated with nuclear AR immunoreactivity. RT-PCR analysis showed low MHC class I expression (HLA-A, TAP1, and PSMB9 mRNA) in PC bone metastases compared to benign and malignant prostate tissue and bone metastases of other origins. In primary PC, low HLA class I ABC immunoreactivity was associated with high Gleason score, bone metastasis, and short cancer-specific survival. Limitations include the limited number of patients studied and the single metastasis sample studied per patient. CONCLUSIONS Most CRPC bone metastases show high AR and metabolic activities and low immune responses. A subgroup instead shows low AR and metabolic activities, but high immune responses. Targeted therapy for these groups should be explored. PATIENT SUMMARY We studied heterogeneities at a molecular level in bone metastasis samples obtained from men with castration-resistant prostate cancer. We found differences of possible importance for therapy selection in individual patients.


Metabolomics | 2007

Statistical multivariate metabolite profiling for aiding biomarker pattern detection and mechanistic interpretations in GC/MS based metabolomics

Elin Pohjanen; Elin Thysell; Johan Lindberg; Thomas Moritz; Pär Jonsson; Henrik Antti

A strategy for robust and reliable mechanistic statistical modelling of metabolic responses in relation to drug induced toxicity is presented. The suggested approach addresses two cases commonly occurring within metabonomic toxicology studies, namely; 1) A pre-defined hypothesis about the biological mechanism exists and 2) No such hypothesis exists. GC/MS data from a liver toxicity study consisting of rat urine from control rats and rats exposed to a proprietary AstraZeneca compound were resolved by means of hierarchical multivariate curve resolution (H-MCR) generating 287 resolved chromatographic profiles with corresponding mass spectra. Filtering according to significance in relation to drug exposure rendered in 210 compound profiles, which were subjected to further statistical analysis following correction to account for the control variation over time. These dose related metabolite traces were then used as new observations in the subsequent analyses. For case 1, a multivariate approach, named Target Batch Analysis, based on OPLS regression was applied to correlate all metabolite traces to one or more key metabolites involved in the pre-defined hypothesis. For case 2, principal component analysis (PCA) was combined with hierarchical cluster analysis (HCA) to create a robust and interpretable framework for unbiased mechanistic screening. Both the Target Batch Analysis and the unbiased approach were cross-verified using the other method to ensure that the results did match in terms of detected metabolite traces. This was also the case, implying that this is a working concept for clustering of metabolites in relation to their toxicity induced dynamic profiles regardless if there is a pre-existing hypothesis or not. For each of the methods the detected metabolites were subjected to identification by means of data base comparison as well as verification in the raw data. The proposed strategy should be seen as a general approach for facilitating mechanistic modelling and interpretations in metabolomic studies.


European Urology | 2016

The Proteome of Primary Prostate Cancer.

Pernilla Wikström; Stefka Tyanova; Charlotte Lavallee; Elin Thysell; Jessica Carlsson; Christina Hägglöf; Juergen Cox; Ove Andrén; Pär Stattin; Lars Egevad; Anders Widmark; Anders Bjartell; Colin Collins; Anders Bergh; Tamar Geiger; Matthias Mann; Amilcar Flores-Morales

BACKGROUND Clinical management of the prostate needs improved prognostic tests and treatment strategies. Because proteins are the ultimate effectors of most cellular reactions, are targets for drug actions and constitute potential biomarkers; a quantitative systemic overview of the proteome changes occurring during prostate cancer (PCa) initiation and progression can result in clinically relevant discoveries. OBJECTIVES To study cellular processes altered in PCa using system-wide quantitative analysis of changes in protein expression in clinical samples and to identify prognostic biomarkers for disease aggressiveness. DESIGN, SETTING, AND PARTICIPANTS Mass spectrometry was used for genome-scale quantitative proteomic profiling of 28 prostate tumors (Gleason score 6-9) and neighboring nonmalignant tissue in eight cases, obtained from formalin-fixed paraffin-embedded prostatectomy samples. Two independent cohorts of PCa patients (summing 752 cases) managed by expectancy were used for immunohistochemical evaluation of proneuropeptide-Y (pro-NPY) as a prognostic biomarker. RESULTS AND LIMITATIONS Over 9000 proteins were identified as expressed in the human prostate. Tumor tissue exhibited elevated expression of proteins involved in multiple anabolic processes including fatty acid and protein synthesis, ribosomal biogenesis and protein secretion but no overt evidence of increased proliferation was observed. Tumors also showed increased levels of mitochondrial proteins, which was associated with elevated oxidative phosphorylation capacity measured in situ. Molecular analysis indicated that some of the proteins overexpressed in tumors, such as carnitine palmitoyltransferase 2 (CPT2, fatty acid transporter), coatomer protein complex, subunit alpha (COPA, vesicle secretion), and mitogen- and stress-activated protein kinase 1 and 2 (MSK1/2, protein kinase) regulate the proliferation of PCa cells. Additionally, pro-NPY was found overexpressed in PCa (5-fold, p<0.05), but largely absent in other solid tumor types. Pro-NPY expression, alone or in combination with the ERG status of the tumor, was associated with an increased risk of PCa specific mortality, especially in patients with Gleason score ≤ 7 tumors. CONCLUSIONS This study represents the first system-wide quantitative analysis of proteome changes associated to localized prostate cancer and as such constitutes a valuable resource for understanding the complex metabolic changes occurring in this disease. We also demonstrated that pro-NPY, a protein that showed differential expression between high and low risk tumors in our proteomic analysis, is also a PCa specific prognostic biomarker associated with increased risk for disease specific death in patients carrying low risk tumors. PATIENT SUMMARY The identification of proteins whose expression change in prostate cancer provides novel mechanistic information related to the disease etiology. We hope that future studies will prove the value of this proteome dataset for development of novel therapies and biomarkers.


Metabolites | 2012

Validated and predictive processing of gas chromatography-mass spectrometry based metabolomics data for large scale screening studies, diagnostics and metabolite pattern verification.

Elin Thysell; Elin Chorell; Michael Svensson; Pär Jonsson; Henrik Antti

The suggested approach makes it feasible to screen large metabolomics data, sample sets with retained data quality or to retrieve significant metabolic information from small sample sets that can be verified over multiple studies. Hierarchical multivariate curve resolution (H-MCR), followed by orthogonal partial least squares discriminant analysis (OPLS-DA) was used for processing and classification of gas chromatography/time of flight mass spectrometry (GC/TOFMS) data characterizing human serum samples collected in a study of strenuous physical exercise. The efficiency of predictive H-MCR processing of representative sample subsets, selected by chemometric approaches, for generating high quality data was proven. Extensive model validation by means of cross-validation and external predictions verified the robustness of the extracted metabolite patterns in the data. Comparisons of extracted metabolite patterns between models emphasized the reliability of the methodology in a biological information context. Furthermore, the high predictive power in longitudinal data provided proof for the potential use in clinical diagnosis. Finally, the predictive metabolite pattern was interpreted physiologically, highlighting the biological relevance of the diagnostic pattern.


Scientific Reports | 2016

Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth

Sofia Halin Bergström; Christina Hägglöf; Elin Thysell; Anders Bergh; Pernilla Wikström; Marie Lundholm

Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer.


PLOS ONE | 2015

High Lysyl Oxidase (LOX) in the Non-Malignant Prostate Epithelium Predicts a Poor Outcome in Prostate Cancer Patient Managed by Watchful Waiting

Maria Nilsson; Christina Hägglöf; Peter Hammarsten; Elin Thysell; Pär Stattin; Lars Egevad; Torvald Granfors; Emma Jernberg; Pernilla Wikström; Sofia Halin Bergström; Anders Bergh

Lysyl oxidase (LOX) has been shown to both promote and suppress tumor progression, but its role in prostate cancer is largely unknown. LOX immunoreactivity was scored in prostate tumor epithelium, tumor stroma and in the tumor-adjacent non-malignant prostate epithelium and stroma. LOX scores in tumor and non-malignant prostate tissues were then examined for possible associations with clinical characteristics and survival in a historical cohort of men that were diagnosed with prostate cancer at transurethral resection and followed by watchful waiting. Men with a low LOX score in the non-malignant prostate epithelium had significantly longer cancer specific survival than men with a high score. Furthermore, LOX score in non-malignant prostate epithelium remained prognostic in a multivariable analysis including Gleason score. LOX score in prostate tumor epithelium positively correlated to Gleason score and metastases but was not associated with cancer survival. LOX score in tumor and non-malignant prostate stroma appeared unrelated to these tumor characteristics. In radical prostatectomy specimens, LOX immune-staining corresponded to LOX in-situ hybridization and LOX mRNA levels were found to be similar between tumor and adjacent non-malignant areas, but significantly increased in bone metastases samples. LOX levels both in tumors and in the surrounding tumor-bearing organ are apparently related to prostate cancer aggressiveness.


PLOS ONE | 2016

Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth

Sofia Halin Bergström; Maria Nilsson; Hanibal Hani Adamo; Elin Thysell; Emma Jernberg; Pär Stattin; Anders Widmark; Pernilla Wikström; Anders Bergh

Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1). To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.

Collaboration


Dive into the Elin Thysell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge