Elina Linetsky
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elina Linetsky.
Diabetes | 1997
Elina Linetsky; Rita Bottino; Roger Lehmann; Rodolfo Alejandro; Luca Inverardi; Camillo Ricordi
Enzymatic digestion of donor pancreases is a vital step in human and large mammalian islet isolation. The variable enzymatic activities of different batches of commercially available collagenase is a major obstacle in achieving reproducibility in islet isolation procedures. In the present work, the effectiveness of Liberase, a standardized mixture of highly purified enzymes recently developed for the separation of human islets, was compared with that of a traditional collagenase preparation (type P). The results of 50 islet isolations using Liberase enzyme were compared with those of 36 isolations with collagenase, type P. No significant differences in donor age, cold ischemia time, digestion time, or weight of the pancreases were observed between the two groups. Islet yield was significantly higher in the group where the Liberase enzyme was used. All parameters examined (islet number, islet number per gram of tissue, islet equivalent number, and islet equivalent number per gram of tissue) were significantly improved when Liberase enzyme was used. Different lots of Liberase enzyme were tested, and no difference was observed. Islets isolated with Liberase enzyme were also of larger size and were much less fragmented, suggesting a gentler enzymatic action and better preservation of anatomical integrity. Islets isolated with Liberase enzyme, assessed both in vitro and in vivo, revealed a functional profile similar to that of islets separated with collagenase. Liberase enzyme appears, therefore, to represent a new powerful tool for improving the quality of human islet isolation.
Cell Transplantation | 2005
Antonello Pileggi; R. Damaris Molano; Thierry Berney; Hirohito Ichii; Sergio San Jose; Elsie Zahr; Raffaella Poggioli; Elina Linetsky; Camillo Ricordi; Luca Inverardi
Transplantation of islets of Langerhans in patients with type 1 diabetes allows for improved metabolic control and insulin independence. The need for chronic immunosuppression limits this procedure to selected patients with brittle diabetes. Definition of therapeutic strategies allowing permanent engraftment without the need for chronic immunosuppression could overcome such limitations. We tested the effect of the use of protoporphyrins (CoPP and FePP), powerful inducers of the cytoprotective protein hemeoxygenase 1 (HO-1), on allogeneic islet graft survival. Chemically induced diabetic C57BL/6 mice received DBA/2 islets. Treatment consisted in peritransplant administration of CoPP or saline. Islets were either cultured in the presence of FePP or vehicle before implant. Short-course administration of CoPP led to long-term islet allograft survival in a sizable proportion of recipients. Long-term graft-bearing animals rejected third-party islets while accepting a second set donor-specific graft permanently, without additional treatment. Preconditioning of islets with FePP by itself led to improved graft survival in untreated recipients, and provided additional advantage in CoPP-treated recipients, resulting in an increased proportion of long-term surviving grafts. Preconditioning of the graft with protoporphyrins prior to implant resulted in reduction of class II expression. Administration of protoporphyrins to the recipients of allogeneic islets also resulted in transient powerful immunosuppression with reduced lymphocyte proliferative responses, increased proportion of regulatory cells (CD4+CD25+), decreased mononuclear cell infiltrating the graft, paralleled by a systemic upregulation of HO-1 expression. All these mechanisms may have contributed to the induction of donor-specific hyporesponsiveness in a proportion of the protoporphyrintreated animals.
Diabetes | 2016
Camillo Ricordi; Julia S. Goldstein; A. N. Balamurugan; Gregory L. Szot; Tatsuya Kin; Chengyang Liu; Christine W. Czarniecki; Barbara Barbaro; Nancy D. Bridges; Jose Cano; William R. Clarke; Thomas L. Eggerman; Lawrence G. Hunsicker; Dixon B. Kaufman; Aisha Khan; David Erick Lafontant; Elina Linetsky; Xunrong Luo; James F. Markmann; Ali Naji; Olle Korsgren; Jose Oberholzer; Nicole A. Turgeon; Daniel Brandhorst; Andrew S. Friberg; Ji Lei; Ling Jia Wang; Joshua J. Wilhelm; Jamie Willits; Xiaomin Zhang
Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed.
The New England Journal of Medicine | 2017
David A. Baidal; Camillo Ricordi; Dora M. Berman; Ana Alvarez; Nathalia Padilla; Gaetano Ciancio; Elina Linetsky; Antonello Pileggi; Rodolfo Alejandro
This letter describes islet transplantation onto the omentum with the use of a degradable scaffold in a patient with a 25-year history of type 1 diabetes mellitus. The patient remained insulin-independent for more than 1 year.
Transplantation | 2004
Luca Inverardi; Elina Linetsky; Antonello Pileggi; R. Damaris Molano; Aldo N. Serafini; Giovanni Paganelli; Camillo Ricordi
Background. Transplantation tolerance, defined as acceptance of a graft by an otherwise fully immunocompetent host, has been an elusive goal. Although robust tolerance has been achieved by the induction of stable hematopoietic chimerism after bone marrow transplantation, lethal or sublethal radiation conditioning used to induce long-term chimerism precludes its clinical use. We studied whether targeted delivery of radiation to bone marrow could allow for bone marrow cell (BMC) engraftment, chimerism, and donor-specific tolerance in the absence of the side effects associated with external irradiation. Methods. We administered a radioactive bone-seeking compound (153Samarium-Lexidronam, Quadramet, Berlex Laboratories, Wayne, NJ) together with transient T-cell costimulatory blockade to recipient mice. Allogeneic BMCs were given 7 or 14 days after preconditioning. Costimulatory blockade was obtained by the use of an anti-CD154 antibody for 4 weeks. Chimerism was assessed by flow cytometry. Mice then received donor-specific and third-party skin grafts. Graft survival was analyzed with mechanisms of donor-specific hyporesponsiveness. Results. High levels of stable chimerism across an allogeneic barrier were achieved in mice by a single administration of 153Samarium-Lexidronam, transient T-cell costimulatory blockade, and BMC transplantation. A large percentage of chimeric animals retained donor-derived skin grafts for more than 120 days without requiring additional immunosuppression, suggesting that harsh cytotoxic preconditioning is not necessary to achieve stable chimerism and donor specific hyporesponsiveness. Analysis of the T-cell repertoire in chimeras indicates T-cell deletional mechanisms. Conclusions. These data broaden the potential use of BMC transplantation for tolerance induction and argue for its potential in treating autoimmune diseases.
Transplantation Proceedings | 2008
Elina Linetsky; Camillo Ricordi
At the present time, transplantation of pancreatic islet cells is considered an experimental therapy for a selected cohort of patients with type 1 diabetes, and is conducted under an Investigational New Drug (IND) application. Encouraging results of the Edmonton Protocol published in the year 2000 sparked a renewed interest in clinical transplantation of allogeneic islets, triggering a large number of IND applications for phase I clinical trials. Promising results reported by a number of centers since then prompted the Food and Drug Administration (FDA) to consider the possibility of licensing allogeneic islets as a therapeutic treatment for patients with type 1 diabetes. However, prior to licensure, issues such as safety, purity, efficacy, and potency of the islet product must be addressed. This is complicated by the intricate nature of pancreatic islets and limited characterization prior to transplantation. In this context, control of the manufacturing process plays a critical role in the definition of the final product. Despite significant progress made in standardization of the donor organ preservation methods, reagents used, and characterization assays performed to qualify an islet cell product, control of the isolation process remains a challenge. Within the scope of the FDA regulations, islet cells meet the definition of a biologic product, somatic cell therapy, and a drug. In addition, AABB standards that address cellular therapy products apply to manufacturing facilities accredited by this organization. Control of the source material, isolation process, and final product are critical issues that must be addressed in the context of FDA and other relevant regulations applicable to islet cell products.
Cell Transplantation | 2016
Ling Jia Wang; Tatsuya Kin; Doug O’Gorman; Am James Shapiro; Bashoo Naziruddin; Morihito Takita; Marlon F. Levy; Andrew M. Posselt; Gregory L. Szot; Omid Savari; Barbara Barbaro; James J. McGarrigle; Chun Chieh Yeh; Jose Oberholzer; Ji Lei; Tao Chen; Moh Lian; James F. Markmann; Alejandro Alvarez; Elina Linetsky; Camillo Ricordi; A. N. Balamurugan; Gopalakrishnan Loganathan; Joshua J. Wilhelm; Bernhard J. Hering; Rita Bottino; Massimo Trucco; Chengyang Liu; Zaw Min; Yanjing Li
Selection of an optimal donor pancreas is the first key task for successful islet isolation. We conducted a retrospective multicenter study in 11 centers in North America to develop an islet donor scoring system using donor variables. The data set consisting of 1,056 deceased donors was used for development of a scoring system to predict islet isolation success (defined as postpurification islet yield >400,000 islet equivalents). With the aid of univariate logistic regression analyses, we developed the North American Islet Donor Score (NAIDS) ranging from 0 to 100 points. The c index in the development cohort was 0.73 (95% confidence interval 0.70–0.76). The success rate increased proportionally as the NAIDS increased, from 6.8% success in the NAIDS < 50 points to 53.7% success in the NAIDS ≥ 80 points. We further validated the NAIDS using a separate set of data consisting of 179 islet isolations. A comparable outcome of the NAIDS was observed in the validation cohort. The NAIDS may be a useful tool for donor pancreas selection in clinical practice. Apart from its utility in clinical decision making, the NAIDS may also be used in a research setting as a standardized measurement of pancreas quality.
Cell Transplantation | 2016
Peter Buchwald; Andres Bernal; Felipe Echeverri; Alejandro Tamayo-Garcia; Elina Linetsky; Camillo Ricordi
For isolated pancreatic islet cell preparations, it is important to be able to reliably assess their mass and quality, and for clinical applications, it is part of the regulatory requirement. Accurate assessment, however, is difficult because islets are spheroid-like cell aggregates of different sizes (<50 to 500 μm) resulting in possible thousandfold differences between the mass contribution of individual particles. The current standard manual counting method that uses size-based group classification is known to be error prone and operator dependent. Digital image analysis (DIA)-based methods can provide less subjective, more reproducible, and better-documented islet cell mass (IEQ) estimates; however, so far, none has become widely accepted or used. Here we present results obtained using a compact, self-contained islet cell counter (ICC3) that includes both the hardware and software needed for automated islet counting and requires minimal operator training and input; hence, it can be easily adapted at any center and could provide a convenient standardized cGMP-compliant IEQ assessment. Using cross-validated sample counting, we found that for most human islet cell preparations, ICC3 provides islet mass (IEQ) estimates that correlate well with those obtained by trained operators using the current manual SOP method (r2 = 0.78, slope = 1.02). Variability and reproducibility are also improved compared to the manual method, and most of the remaining variability (CV = 8.9%) results from the rearrangement of the islet particles due to movement of the sample between counts. Characterization of the size distribution is also important, and the present digitally collected data allow more detailed analysis and coverage of a wider size range. We found again that for human islet cell preparations, a Weibull distribution function provides good description of the particle size.
Transplantation Proceedings | 1997
Luca Inverardi; Elina Linetsky; Norma S. Kenyon; C. Socci; C. Ricordi
HILE SEVERAL critical issues, such as organ harvest and preservation, are common to the fields of solid organ and tissue transplantation, some problems are unique to the latter. In particular, issues related to the requirement for manipulation of the organs and tissues with chemical, enzymatic, and mechanical techniques, as a means for the dissociation of tissue components to obtain the desired cell preparation, result in the use of several chemicals and biologic reagents during the isolation and purification process. These reagents can contribute, in a significant way, to the antigenicity of the tissue. For example, it has recently been shown that endotoxin contamination of the media and enzymes utilized in islet isolation can directly affect islet immunogenic&y via binding to the lipopolysaccharide (LPS) receptor expressed on islet cells. Such binding induces the production of cytokines and mediators of inflammation that are detrimental to the function and viability of islets.’ This series of events might contribute to the poor outcome of islet transplantation in the clinical setting, and could explain the very high incidence of early graft failures, possibly linked to inflammatory events favored by the isolation and purification procedures. It was the purpose of this study to examine the possible influence of the use of selected reagents on the overall immunogenicity of the islet preparation.
Diabetes | 2017
Camillo Ricordi; Julia S. Goldstein; A. N. Balamurugan; Gregory L. Szot; Tatsuya Kin; Chengyang Liu; Christine W. Czarniecki; Barbara Barbaro; Nancy D. Bridges; Jose Cano; William R. Clarke; Thomas L. Eggerman; Lawrence G. Hunsicker; Dixon B. Kaufman; Aisha Khan; David-Erick Lafontant; Elina Linetsky; Xunrong Luo; James F. Markmann; Ali Naji; Olle Korsgren; Jose Oberholzer; Nicole A. Turgeon; Daniel Brandhorst; Andrew S. Friberg; Ji Lei; Ling-jia Wang; Joshua J. Wilhelm; Jamie Willits; Xiaomin Zhang
In the article listed above, Xiaojuan Chen, now of the Columbia Center for Translational Immunology, Columbia University, New York, NY, was erroneously omitted from the author list. Dr. Chen contributed to the Clinical Islet Transplantation (CIT) …