Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elina Oksanen is active.

Publication


Featured researches published by Elina Oksanen.


Nature | 2002

Altered performance of forest pests under atmospheres enriched by CO2 and O3

Kevin E. Percy; Caroline S. Awmack; Richard L. Lindroth; Mark E. Kubiske; Brian J. Kopper; Jud G. Isebrands; Kurt S. Pregitzer; George R. Hendrey; Richard E. Dickson; Donald R. Zak; Elina Oksanen; Jaak Sober; R. Harrington; David F. Karnosky

Human activity causes increasing background concentrations of the greenhouse gases CO2 and O3. Increased levels of CO2 can be found in all terrestrial ecosystems. Damaging O3 concentrations currently occur over 29% of the worlds temperate and subpolar forests but are predicted to affect fully 60% by 2100 (ref. 3). Although individual effects of CO2 and O3 on vegetation have been widely investigated, very little is known about their interaction, and long-term studies on mature trees and higher trophic levels are extremely rare. Here we present evidence from the most widely distributed North American tree species, Populus tremuloides, showing that CO2 and O3, singly and in combination, affected productivity, physical and chemical leaf defences and, because of changes in plant quality, insect and disease populations. Our data show that feedbacks to plant growth from changes induced by CO2 and O3 in plant quality and pest performance are likely. Assessments of global change effects on forest ecosystems must therefore consider the interacting effects of CO2 and O3 on plant performance, as well as the implications of increased pest activity.


Environmental Pollution | 2001

Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3?

B.A Wustman; Elina Oksanen; David F. Karnosky; Asko Noormets; J. G. Isebrands; Kurt S. Pregitzer; George R. Hendrey; Jaak Sober; G.K. Podila

To determine whether elevated CO2 reduces or exacerbates the detrimental effects of O3 on aspen (Populus tremuloides Michx.). aspen clones 216 and 271 (O3 tolerant), and 259 (O3 sensitive) were exposed to ambient levels of CO2 and O3 or elevated levels of CO2, O3, or CO2 + O3 in the FACTS II (Aspen FACE) experiment, and physiological and molecular responses were measured and compared. Clone 259. the most O3-sensitive clone, showed the greatest amount of visible foliar symptoms as well as significant decreases in chlorophyll, carotenoid, starch, and ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) concentrations and transcription levels for the Rubisco small subunit. Generally, the constitutive (basic) transcript levels for phenylalanine ammonialyase (PAL) and chalcone synthase (CHS) and the average antioxidant activities were lower for the ozone sensitive clone 259 as compared to the more tolerant 216 and 271 clones. A significant decrease in chlorophyll a, b and total (a + b) concentrations in CO2, O3, and CO2 + O3 plants was observed for all clones. Carotenoid concentrations were also significantly lower in all clones; however. CHS transcript levels were not significantly affected, suggesting a possible degradation of carotenoid pigments in O3-stressed plants. Antioxidant activities and PAL and 1-aminocyclopropane-l-carboxylic acid (ACC)-oxidase transcript levels showed a general increase in all O3 treated clones, while remaining low in CO2 and CO2 + O3 plants (although not all differences were significant). Our results suggest that the ascorbate-glutathione and phenylpropanoid pathways were activated under ozone stress and suppressed during exposure to elevated CO2. Although CO2 + O2 treatment resulted in a slight reduction of O3-induced leaf injury, it did not appear to ameliorate all of the harmful affects of O3 and, in fact. may have contributed to an increase in chloroplast damage in all three aspen clones.


Journal of Chemical Ecology | 2001

Effects of Long-Term Open-Field Ozone Exposure on Leaf Phenolics of European Silver Birch (Betula pendula Roth)

Ammar Saleem; Jyrki Loponen; Kalevi Pihlaja; Elina Oksanen

The response of phenolic compounds as a result of long-term low open-field ozone exposure was studied in ozone-sensitive and ozone-tolerant clones of European silver birch (Betula pendula Roth). The saplings were exposed to 1.5–1.6 times the ambient (elevated) ozone and ambient air (as control) over three growing seasons from May 1996 until August 1998. Quantification by modified Folin-Ciocalteau assay showed a 16.2% increase in total phenolics in elevated ozone plants as compared to that in controls and a corresponding 9.9% increase of 10 phenolic compounds quantified by HPLC. Five nonflavonoids and five flavonoids showed 8.4% and 11.4% increases, respectively. The phenolic results indicated slightly higher ozone sensitivity of clone 5 as compared to clone 2. The most ozone-responsive phenolic compounds in clone 2 and clone 5 were (+)-catechin (CT), chlorogenic acid (CGA), 5-p-coumaroylquinic acid (5CQA), 3-p-coumaroylquinic acid (3CQA), myricetin galactopyranoside (MG), quercetin-3-O-glucuronopyranoside (QGR), and quercetin-3-O-arabinofuranoside (QA). Increased phenolic content in ozone-exposed plants was related to impaired growth and accelerated leaf senescence, indicated by enhanced autumn leaf yellowing and lower chlorophyll and Mg content. The change in carbon allocation towards defensive phenolics at the expense of growth was greater in the ozone-sensitive clone as compared to tolerant clone.


Physiologia Plantarum | 2010

Real-time monitoring of herbivore induced volatile emissions in the field.

Andrea Schaub; James D. Blande; Martin Graus; Elina Oksanen; Jarmo K. Holopainen; Armin Hansel

When plants are damaged by herbivorous insects they emit a blend of volatile organic compounds (VOCs) which include a range or terpenoids and green leaf volatiles (GLVs) formed via different metabolic pathways. The precise timing of these emissions upon the onset of herbivore feeding has not been fully elucidated, and the information that is available has been mainly obtained through laboratory based studies. We investigated emissions of VOCs from Populus tremula L. xP. tremuloides Michx. during the first 20 h of feeding by Epirrita autumnata (autumnal moth) larvae in a field site. The study was conducted using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) to measure emissions online, with samples collected for subsequent analysis by complementary gas chromatography-mass spectrometry for purposes of compound identification. GLV emission peaks occurred sporadically from the outset, indicating herbivore activity, while terpene emissions were induced within 16 h. We present data detailing the patterns of monoterpene (MT), GLV and sesquiterpene (SQT) emissions during the early stages of herbivore feeding showing diurnal MT and SQT emission that is correlated more with temperature than light. Peculiarities in the timing of SQT emissions prompted us to conduct a thorough characterization of the equipment used to collect VOCs and thus corroborate the accuracy of results. A laboratory based analysis of the throughput of known GLV, MT and SQT standards at different temperatures was made with PTR-MS. Enclosure temperatures of 12, 20 and 25 degrees C had little influence on the response time for dynamic measurements of a GLV or MT. However, there was a clear effect on SQT measurements. Elucidation of emission patterns in real-time is dependent upon the dynamics of cuvettes at different temperatures.


Environmental Pollution | 2001

Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment

Elina Oksanen; Jaak Sober; David F. Karnosky

Impacts of elevated atmospheric O3 and/or CO2 on three clones of aspen (Populus tremuloides Michx.) and birch (Betula papyrifera Marsh.) were studied to determine, whether or not elevated CO2 ameliorates O3-induced damage to leaf cells. The plants were exposed for 3 years at the Aspen FACE exposure site in Wisconsin (USA) prior to sampling for ultrastructural investigations on 19 June 1999. In the aspen clones, elevated CO2 increased chloroplast cover index, leaf and spongy mesophyll layer thickness, intercellular air space volume in mesophyll, amount of starch in chloroplasts and cytoplasmic lipids but decreased the number of plastoglobuli in chloroplasts. In contrast, elevated O3 decreased chloroplast cover index, starch content, and the proportion of cytoplasm and intercellular space in mesophyll, and increased the proportion of vacuoles, the amount of condensed vacuolar tannins and the number of plastoglobuli. Ozone also caused structural thylakoid injuries (dilation, distortion) and stromal condensation in chloroplasts, which was ameliorated by elevated CO2 by 5-66% in aspen clones and by 2-10% in birch. Birch ultrastructure was less affected by elevated CO2 or O3 stress compared to aspen. In the most O3-sensitive aspen clone, thinner leaves and cell walls, lower proportion of cell wall volume, and higher volume for vacuoles was found compared to more-tolerant clones.


Tree Physiology | 2009

Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature

Kaisa Hartikainen; Anne-Marja Nerg; Minna Kivimäenpää; Sari Kontunen-Soppela; Maarit Mäenpää; Elina Oksanen; Matti Rousi; Toini Holopainen

Northern forest trees are challenged to adapt to changing climate, including global warming and increasing tropospheric ozone (O(3)) concentrations. Both elevated O(3) and temperature can cause significant changes in volatile organic compound (VOC) emissions as well as in leaf anatomy that can be related to adaptation or increased stress tolerance, or are signs of damage. Impacts of moderately elevated O(3) (1.3x ambient) and temperature (ambient + 1 degrees C), alone and in combination, on VOC emissions and leaf structure of two genotypes (2.2 and 5.2) of European aspen (Populus tremula L.) were studied in an open-field experiment in summer 2007. The impact of O(3) on measured variables was minor, but elevated temperature significantly increased emissions of total monoterpenes and green leaf volatiles. Genotypic differences in the responses to warming treatment were also observed. alpha-Pinene emission, which has been suggested to protect plants from elevated temperature, increased from genotype 5.2 only. Isoprene emission from genotype 2.2 decreased, whereas genotype 5.2 was able to retain high isoprene emission level also under elevated temperature. Elevated temperature also caused formation of thinner leaves, which was related to thinning of epidermis, palisade and spongy layers as well as reduced area of palisade cells. We consider aspen genotype 5.2 to have better potential for adaptation to increasing temperature because of thicker photosynthetic active palisade layer and higher isoprene and alpha-pinene emission levels compared to genotype 2.2. Our results show that even a moderate elevation in temperature is efficient enough to cause notable changes in VOC emissions and leaf structure of these aspen genotypes, possibly indicating the effort of the saplings to adapt to changing climate.


Environmental Pollution | 2010

Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone

Niina Saviranta; Riitta Julkunen-Tiitto; Elina Oksanen; Reijo Karjalainen

Red clover (Trifolium pratense L.), an important feed crop in many parts of the world, is exposed to elevated ozone over large areas. Plants can limit ozone-induced damages by various defence mechanisms. In this work, changes in the concentrations of antioxidant phenolic compounds induced by slightly elevated levels of ozone were determined in red clover leaves by high-performance liquid chromatography and mass spectrometry. 31 different phenolics were identified and the most abundant isoflavones and flavonoids were biochanin A glycoside malonate (G-M), formononetin-G-M and quercetin-G-M. Elevated ozone (mean 32.4 ppb) increased the total phenolic content of leaves and also had minor effects on the concentrations of individual compounds. Elevated ozone increased the net photosynthesis rate of red clover leaves before visible injuries by 21-23%. This study thus suggests that the concentrations of phenolics in red clover leaves change in response to slightly elevated ozone levels.


Environmental Pollution | 2015

New flux based dose–response relationships for ozone for European forest tree species

Patrick Büker; Zhaozhong Feng; Johan Uddling; Alan Briolat; R. Alonso; S. Braun; S. Elvira; Giacomo Alessandro Gerosa; P.E. Karlsson; D. Le Thiec; Riccardo Marzuoli; Gina Mills; Elina Oksanen; Gerhard Wieser; M. Wilkinson; Lisa Emberson

To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate.


Environmental Pollution | 2013

Impacts of increasing ozone on Indian plants

Elina Oksanen; Vivek Pandey; A.K. Pandey; Sarita Keski-Saari; Sari Kontunen-Soppela; C. Sharma

Increasing anthropogenic and biogenic emissions of precursor compounds have led to high tropospheric ozone concentrations in India particularly in Indo-Gangetic Plains, which is the most fertile and cultivated area of this rapidly developing country. Current ozone risk models, based on European and North American data, provide inaccurate estimations for crop losses in India. During the past decade, several ozone experiments have been conducted with the most important Indian crop species (e.g. wheat, rice, mustard, mung bean). Experimental work started in natural field conditions around Varanasi area in early 2000s, and the use of open top chambers and EDU (ethylene diurea) applications has now facilitated more advanced studies e.g. for intra-species sensitivity screening and mechanisms of tolerance. In this review, we identify and discuss the most important gaps of knowledge and future needs of action, e.g. more systematic nationwide monitoring for precursor and ozone formation over Indian region.


Journal of Experimental Botany | 2010

Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula

Mohamed A. Ibrahim; Maarit Mäenpää; Viivi H. Hassinen; Sari Kontunen-Soppela; Lukáš Malec; Matti Rousi; Liisa Pietikäinen; Arja Tervahauta; Sirpa Kärenlampi; Jarmo K. Holopainen; Elina Oksanen

Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 °C) while daytime temperature was kept at a constant 22 °C. VOC emissions were collected during the daytime and analysed by gas chromatography–mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and β-ocimene increased from 6 °C to 14 °C, while several other monoterpenes and the SQTs (Z,E)-α-farnesene and (E,E)-α-farnesene increased up to 18 °C. Total monoterpene and sesquiterpene emission peaked at 18 °C, whereas isoprene emissions decreased at 22 °C. Leaf area increased across the temperature range of 6–22 °C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.

Collaboration


Dive into the Elina Oksanen's collaboration.

Top Co-Authors

Avatar

Sari Kontunen-Soppela

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Elina Vapaavuori

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Matti Rousi

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Toini Holopainen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Johanna Riikonen

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sarita Keski-Saari

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

David F. Karnosky

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

Markku Keinänen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Jarmo K. Holopainen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge