Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elinor Medezinski is active.

Publication


Featured researches published by Elinor Medezinski.


Nature | 2012

A magnified young galaxy from about 500 million years after the Big Bang

Wei Zheng; Marc Postman; Adi Zitrin; John Moustakas; Xinwen Shu; S. Jouvel; Ole Host; A. Molino; L. Bradley; Dan Coe; Leonidas A. Moustakas; Mauricio Carrasco; Holland C. Ford; N. Benítez; Tod R. Lauer; S. Seitz; R. J. Bouwens; Anton M. Koekemoer; Elinor Medezinski; Matthias Bartelmann; Tom Broadhurst; Megan Donahue; C. Grillo; Leopoldo Infante; Saurabh W. Jha; Daniel D. Kelson; Ofer Lahav; Doron Lemze; P. Melchior; Massimo Meneghetti

Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6–11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.Johns Hopkins University, 3701 San Martin Drive, Baltimore , MD 21218, U.S.A. Space Telescope Science Institute Universität Heidelberg University of California, San Diego University of Science and Technology of China University College London Institute de Ciencies de l’Espai Instituto de Astrofı́sica de Andalucı́a Jet Propulsion Laboratory, California Institute of Techno logy Pontificia Universidad Católica de Chile National Optical Astronomical Observatory Universitas Sternwarte, München Leiden Observatory University of Basque Country


The Astrophysical Journal | 2014

A census of star-forming galaxies in the z ∼ 9-10 universe based on hst+spitzer observations over 19 clash clusters: Three candidate z ∼ 9-10 galaxies and improved constraints on the star formation rate density at z

R. J. Bouwens; L. Bradley; Adi Zitrin; D. Coe; Marijn Franx; W. Zheng; R. Smit; Ole Host; Marc Postman; Leonidas A. Moustakas; Ivo Labbé; Mauricio Carrasco; A. Molino; Megan Donahue; D. Kelson; Massimo Meneghetti; N. Benítez; Doron Lemze; Keiichi Umetsu; Tom Broadhurst; John Moustakas; P. Rosati; S. Jouvel; Matthias Bartelmann; Holland C. Ford; Genevieve J. Graves; C. Grillo; L. Infante; Y. Jimenez-Teja; Ofer Lahav

We utilise a two-color Lyman-Break selection criterion to search for z � 9-10 galaxies over the first 19 clusters in the CLASH program. Key to this search are deep observations over our clusters in five near-IR passbands to 1.6µm, allowing us good constraints on the position of the Lyman break to z � 10. A systematic search yields three z � 9-10 candidates in total above a 6� detection limit. While we have already reported the most robust of these candidates, MACS1149-JD, in a previous publication, two additional z � 9 candidates are also revealed in our expanded search. The new candidates have H160-band AB magnitudes of �26.2-26.9 and are located behind MACSJ1115.9+0129 and MACSJ1720.3+3536. The observed H160 Spitzer/IRAC colors for the sources are sufficiently blue to strongly favor redshifts of z � 9 for these sources. A careful assessment of various sources of contamination suggests .1 contaminants for our z � 9-10 selection. To determine the implications of these search results for the LF and SFR density at z � 9, we introduce a new differential approach to deriving these quantities in lensing fields. Our procedure is to derive the evolution by comparing the number of z � 9-10 galaxy candidates found in CLASH with the number of galaxies in a slightly lower redshift sample (after correcting for the differences in selection volumes), here taken to be z � 8. This procedure takes advantage of the fact that the relative selection volumes available for the z � 8 and z � 9-10 selections behind lensing clusters are not greatly dependent on the details of the gravitational lensing models. We find that the normalization of the UV LF at z � 9 is just 0.22 +0.30 −0.15 × that at z � 8, �2 +31× lower than what we would infer extrapolating z � 4-8 LF results. These results therefore suggest a more rapid evolution in the UV LF at z > 8 than seen at lower redshifts (although the current evidence here is weak). Compared to similar evolutionary findings from the HUDF, our result is much more insensitive to large-scale structure uncertainties, given our many independent sightlines on the high-redshift universe. Subject headings: galaxies: evolution — galaxies: high-redshift


The Astrophysical Journal | 2014

CLASH: Weak-lensing Shear-and-magnification Analysis of 20 Galaxy Clusters

Keiichi Umetsu; Elinor Medezinski; M. Nonino; Julian Merten; Marc Postman; M. Meneghetti; Megan Donahue; Nicole G. Czakon; A. Molino; S. Seitz; D. Gruen; Doron Lemze; I. Balestra; N. Benítez; A. Biviano; Tom Broadhurst; Holland C. Ford; C. Grillo; Anton M. Koekemoer; P. Melchior; A. Mercurio; John Moustakas; P. Rosati; Adi Zitrin

We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≾ z ≾ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≃ 25 in the radial range of 200-3500 kpc h^(–1), providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c_(200c)=4.01^(+0.35)_(-0.32) at an effective halo mass of M_(200c)=1.34^(+0.10)_(-0.09) x 10^(15)M_☉. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is ɑ_E=0.191^(+0.071)_(-0.068), which is consistent with the NFW-equivalent Einasto parameter of ~0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.


Monthly Notices of the Royal Astronomical Society | 2009

New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model

Adi Zitrin; Tom Broadhurst; Keiichi Umetsu; Dan Coe; N. Benítez; Begoña Ascaso; L. Bradley; Holland C. Ford; James Jee; Elinor Medezinski; Yoel Rephaeli; Wei Zheng

We present an improved strong-lensing analysis of Cl0024+1654 (z = 0.39) using deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS)/NIC3 images, based on 33 multiply-lensed images of 11 background galaxies. These are found with a model that assumes mass approximately traces light, with a low-order expansion to allow for flexibility on large scales. The model is constrained initially by the well-known five-image system (z = 1.675) and refined as new multiply-lensed systems are identified using the model. Photometric redshifts of these new systems are then used to constrain better the mass profile by adopting the standard cosmological relation between redshift and lensing distance. Our model requires only six free parameters to describe well all positional and redshift data. The resulting inner mass profile has a slope of d log M/ dl ogr �− 0.55, consistent with new weak-lensing measurements where the data overlap, at r � 200 kpc/h70. The combined profile is well fitted by a high-concentration Navarro, Frenk & White (NFW) mass profile, Cvir ∼ 8.6 ± 1.6,


The Astrophysical Journal | 2014

Evidence for ubiquitous high-equivalent-width nebular emission in z ∼ 7 galaxies : toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies

R. Smit; R. J. Bouwens; Ivo Labbé; W. Zheng; L. Bradley; Megan Donahue; Doron Lemze; John Moustakas; Keiichi Umetsu; Adi Zitrin; D. Coe; Marc Postman; V. Gonzalez; Matthias Bartelmann; N. Benítez; Tom Broadhurst; Holland C. Ford; C. Grillo; L. Infante; Y. Jimenez-Teja; S. Jouvel; D. Kelson; Ofer Lahav; D. Maoz; Elinor Medezinski; P. Melchior; Massimo Meneghetti; Julian Merten; A. Molino; Leonidas A. Moustakas

Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ~ 5-7 galaxies. This line emission makes z ~ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ~ 7, and we present a strategy for an improved measurement of the sSFR at z ~ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ~ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H_(160) < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = –0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 A for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 A. We can also set a robust lower limit of ≳ 4 Gyr^(–1) on the sSFR of our sample based on the mean spectral energy distribution.


The Astrophysical Journal | 2008

Comparison of Cluster Lensing Profiles with ΛCDM Predictions

Tom Broadhurst; Keiichi Umetsu; Elinor Medezinski; Masamune Oguri; Yoel Rephaeli

We derive lens distortion and magnification profiles of four well-known clusters observed with Subaru. Each cluster is very well fitted by the general form predicted for cold dark matter (CDM) dominated halos, with good consistency found between the independent distortion and magnification measurements. The inferred level of mass concentration is surprisingly high, 8 < cvir < 15 ( cvir = 10.39 ± 0.91), compared to the relatively shallow profiles predicted by the ΛCDM model, cvir = 5.06 ± 1.10 (for Mvir = 1.25 × 1015 M☉ h−1). This represents a 4 σ discrepancy, and includes the relatively modest effects of projection bias and profile evolution derived from N-body simulations, which oppose each other with little residual effect. In the context of CDM-based cosmologies, this discrepancy implies that clusters collapse earlier (z ≥ 1) than predicted (z < 0.5), when the universe was correspondingly denser.


The Astrophysical Journal | 2015

CLASH: The CONCENTRATION-MASS RELATION of GALAXY CLUSTERS

Julian Merten; M. Meneghetti; Marc Postman; Keiichi Umetsu; Adi Zitrin; Elinor Medezinski; M. Nonino; Anton M. Koekemoer; P. Melchior; D. Gruen; Leonidas A. Moustakas; Matthias Bartelmann; Ole Host; Megan Donahue; D. Coe; A. Molino; S. Jouvel; A. Monna; S. Seitz; Nicole G. Czakon; Doron Lemze; Jack Sayers; I. Balestra; Piero Rosati; N. Benítez; A. Biviano; R. J. Bouwens; L. Bradley; Tom Broadhurst; Mauricio Carrasco

We present a new determination of the concentration–mass (c–M) relation for galaxy clusters based on our comprehensive lensing analysis of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble (CLASH). Our sample spans a redshift range between 0.19 and 0.89. We combine weak-lensing constraints from the Hubble Space Telescope (HST) and from ground-based wide-field data with strong lensing constraints from HST. The results are reconstructions of the surface-mass density for all CLASH clusters on multi-scale grids. Our derivation of Navarro–Frenk–White parameters yields virial masses between 0.53 × 10^(15) M_⊙ h and 1.76 × 10^(15) M_⊙ h and the halo concentrations are distributed around c_(200c) ∼ 3.7 with a 1σ significant negative slope with cluster mass. We find an excellent 4% agreement in the median ratio of our measured concentrations for each cluster and the respective expectation from numerical simulations after accounting for the CLASH selection function based on X-ray morphology. The simulations are analyzed in two dimensions to account for possible biases in the lensing reconstructions due to projection effects. The theoretical c–M relation from our X-ray selected set of simulated clusters and the c–M relation derived directly from the CLASH data agree at the 90% confidence level.


The Astrophysical Journal | 2011

CLUSTER MASS PROFILES FROM A BAYESIAN ANALYSIS OF WEAK-LENSING DISTORTION AND MAGNIFICATION MEASUREMENTS: APPLICATIONS TO SUBARU DATA*

Keiichi Umetsu; Tom Broadhurst; Adi Zitrin; Elinor Medezinski; Li-Yen Hsu

We directly construct model-independent mass profiles of galaxy clusters from combined weak-lensing distortion and magnification measurements within a Bayesian statistical framework, which allows for a full parameter-space extraction of the underlying signal. This method applies to the full range of radius outside the Einstein radius, and recovers the absolute mass normalization. We apply our method to deep Subaru imaging of five high-mass (> 10 15 M ⊙ ) clusters, A1689, A1703, A370, C10024 + 17, and RXJ1347-11, to obtain accurate profiles beyond the virial radius (r vir ). For each cluster, the lens distortion and magnification data are shown to be consistent with each other, and the total signal-to-noise ratio of the combined measurements ranges from 13 to 24 per cluster. We form a model-independent mass profile from stacking the clusters, which is detected at 37σ out to R ≈ 1.7r vir . The projected logarithmic slope γ 2D (R) ≡ d ln Σ/d ln R steepens from γ 2D = -1.01 ± 0.09 at R ≈ 0.1r vir to γ 2D = -1.92 ± 0.51 at R ≈ 0.9r vir . We also derive for each cluster inner strong-lensing-based mass profiles from deep Advanced Camera for Surveys observations with the Hubble Space Telescope, which we show overlap well with the outer Subaru-based profiles and together are well described by a generalized form of the Navarro-Frenk-White profile, except for the ongoing merger RXJ1347-11, with modest variations in the central cusp slope (-d ln ρ/d ln r ≲ 0.9). The improvement here from adding the magnification measurements is significant, ∼30% in terms of cluster mass profile measurements, compared with the lensing distortion signal.


The Astrophysical Journal | 2012

CLASH: Precise new constraints on the mass profile of the galaxy cluster A2261

Dan Coe; Keiichi Umetsu; Adi Zitrin; Megan Donahue; Elinor Medezinski; Marc Postman; Mauricio Carrasco; T. Anguita; Margaret J. Geller; Kenneth Rines; Michael J. Kurtz; L. Bradley; Anton M. Koekemoer; Wei Zheng; M. Nonino; A. Molino; Andisheh Mahdavi; Doron Lemze; Leopoldo Infante; Sara Ogaz; P. Melchior; Ole Host; Holland C. Ford; C. Grillo; P. Rosati; Y. Jimenez-Teja; John Moustakas; Tom Broadhurst; Begoña Ascaso; Ofer Lahav

We precisely constrain the inner mass profile of A2261 (z = 0.225) for the first time and determine that this cluster is not “overconcentrated” as found previously, implying a formation time in agreement with ΛCDM expectations. These results are based on multiple strong-lensing analyses of new 16-band Hubble Space Telescope imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble. Combining this with revised weaklensing analyses of Subaru wide-field imaging with five-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass Mvir = (2.2 ± 0.2) × 1015 M h−1 70 (within rvir ≈ 3 Mpc h−1 70 ) and concentration cvir = 6.2 ± 0.3 when assuming a spherical halo. This agrees broadly with average c(M, z) predictions from recent ΛCDM simulations, which span 58. Our most significant systematic uncertainty is halo elongation along the line of sight (LOS). To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ∼35% lower than our lensing-derived profile at r2500 ∼ 600 kpc. Agreement can be achieved by a halo elongated with a ∼2:1 axis ratio along our LOS. For this elongated halo model, we find Mvir = (1.7 ± 0.2) × 1015 M h−1 70 and cvir = 4.6 ± 0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find that these tend to lower Mvir further by ∼7% and increase cvir by ∼5%. Ke


The Astrophysical Journal | 2011

A Precise Cluster Mass Profile Averaged from the Highest-quality Lensing Data

Keiichi Umetsu; Tom Broadhurst; Adi Zitrin; Elinor Medezinski; Dan Coe; Marc Postman

We outline our methods for obtaining high-precision mass profiles, combining independent weak-lensing distortion, magnification, and strong-lensing measurements. For massive clusters, the strong- and weak-lensing regimes contribute equal logarithmic coverage of the radial profile. The utility of high-quality data is limited by the cosmic noise from large-scale structure along the line of sight. This noise is overcome when stacking clusters, as too are the effects of cluster asphericity and substructure, permitting a stringent test of theoretical models. We derive a mean radial mass profile of four similar mass clusters of high-quality Hubble Space Telescope and Subaru images, in the range R = 40-2800 kpc h –1, where the inner radial boundary is sufficiently large to avoid smoothing from miscentering effects. The stacked mass profile is detected at 58σ significance over the entire radial range, with the contribution from the cosmic noise included. We show that the projected mass profile has a continuously steepening gradient out to beyond the virial radius, in remarkably good agreement with the standard Navarro-Frenk-White form predicted for the family of cold dark matter (CDM) dominated halos in gravitational equilibrium. The central slope is constrained to lie in the range, –dln ρ/dln r = 0.89+0.27 – 0.39. The mean concentration is c vir = 7.68+0.42 – 0.40 (at M vir = 1.54+0.11 – 0.10 × 1015 M ☉ h –1), which is high for relaxed, high-mass clusters, but consistent with ΛCDM when a sizable projection bias estimated from N-body simulations is considered. This possible tension will be more definitively explored with new cluster surveys, such as CLASH, LoCuSS, Subaru Hyper Suprime-Cam, and XXM-XXL, to construct the c vir-M vir relation over a wider mass range.

Collaboration


Dive into the Elinor Medezinski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adi Zitrin

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Marc Postman

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

N. Benítez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

L. Bradley

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Megan Donahue

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

C. Grillo

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Doron Lemze

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge