Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elio Sucena is active.

Publication


Featured researches published by Elio Sucena.


Nature | 2011

The genome of Tetranychus urticae reveals herbivorous pest adaptations

Miodrag Grbic; Thomas Van Leeuwen; Richard M. Clark; Stephane Rombauts; Pierre Rouzé; Vojislava Grbic; Edward J. Osborne; Wannes Dermauw; Phuong Cao Thi Ngoc; Félix Ortego; Pedro Hernández-Crespo; Isabel Diaz; M. Martinez; Maria Navajas; Elio Sucena; Sara Magalhães; Lisa M. Nagy; Ryan M. Pace; Sergej Djuranovic; Guy Smagghe; Masatoshi Iga; Olivier Christiaens; Jan A. Veenstra; John Ewer; Rodrigo Mancilla Villalobos; Jeffrey L. Hutter; Stephen D. Hudson; Marisela Vélez; Soojin V. Yi; Jia Zeng

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90u2009megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant–herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.


Nature | 2003

Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism

Elio Sucena; Isabelle Delon; Isaac Jones; François Payre; David L. Stern

Cases of convergent evolution that involve changes in the same developmental pathway, called parallelism, provide evidence that a limited number of developmental changes are available to evolve a particular phenotype. To our knowledge, in no case are the genetic changes underlying morphological convergence understood. However, morphological convergence is not generally assumed to imply developmental parallelism. Here we investigate a case of convergence of larval morphology in insects and show that the loss of particular trichomes, observed in one species of the Drosophila melanogaster species group, has independently evolved multiple times in the distantly related D. virilis species group. We present genetic and gene expression data showing that regulatory changes of the shavenbaby/ovo (svb/ovo) gene underlie all independent cases of this morphological convergence. Our results indicate that some developmental regulators might preferentially accumulate evolutionary changes and that morphological parallelism might therefore be more common than previously appreciated.


PLOS ONE | 2008

Rapid Experimental Evolution of Pesticide Resistance in C. elegans Entails No Costs and Affects the Mating System

Patricia C. Lopes; Elio Sucena; M. Emília Santos; Sara Magalhães

Pesticide resistance is a major concern in natural populations and a model trait to study adaptation. Despite the importance of this trait, the dynamics of its evolution and of its ecological consequences remain largely unstudied. To fill this gap, we performed experimental evolution with replicated populations of Caenorhabditis elegans exposed to the pesticide Levamisole during 20 generations. Exposure to Levamisole resulted in decreased survival, fecundity and male frequency, which declined from 30% to zero. This was not due to differential susceptibility of males. Rather, the drug affected mobility, resulting in fewer encounters, probably leading to reduced outcrossing rates. Adaptation, i.e., increased survival and fecundity, occurred within 10 and 20 generations, respectively. Male frequency also increased by generation 20. Adaptation costs were undetected in the ancestral environment and in presence of Ivermectin, another widely-used pesticide with an opposite physiological effect. Our results demonstrate that pesticide resistance can evolve at an extremely rapid pace. Furthermore, we unravel the effects of behaviour on life-history traits and test the environmental dependence of adaptation costs. This study establishes experimental evolution as a powerful tool to tackle pesticide resistance, and paves the way to further investigations manipulating environmental and/or genetic factors underlying adaptation to pesticides.


CSH Protocols | 2011

Preparation of Cuticles from Unhatched First-Instar Drosophila Larvae

David L. Stern; Elio Sucena

The finely sculpted cuticle of Drosophila carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. Studies of the Drosophila cuticle have focused mainly on first-instar larvae and adult cuticular morphology. This protocol describes the preparation of cuticles from larvae that have not yet hatched from the egg. It is designed for sampling all eggs laid by one or more females. This can be particularly useful, for example, when a mutation produces embryos that are unable to hatch from the egg.


bioRxiv | 2018

Genomic analysis of European Drosophila melanogaster populations on a dense spatial scale reveals longitudinal population structure and continent-wide selection

Martin Kapun; Maite Garazi Barron Aduriz; Fabian Staubach; Jorge Vieira; Darren J. Obbard; Clement Goubert; Omar Rota Stabelli; Maaria Kankare; Annabelle Haudry; R. Axel W. Wiberg; Lena Waidele; I. A. Kozeretska; Elena G. Pasyukova; Volker Loeschcke; Marta Pascual; Cristina P. Vieira; Svitlana V. Serga; Catherine Montchamp-Moreau; Jessica K. Abbott; Patricia Gibert; Damiano Porcelli; Nico Posnien; Sonja Grath; Elio Sucena; Alan O. Bergland; María Pilar García Guerreiro; Banu Sebnem Onder; Eliza Argyridou; Lain Guio; Mads Fristrup Schou

Abstract Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatio-temporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterise variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.Genetic variation is the fuel of evolution. However, analyzing evolutionary dynamics in natural populations is challenging, sequencing of entire populations remains costly and comprehensive sampling logistically difficult. To tackle this issue and to define relevant spatial and temporal scales of variation, we have founded the European Drosophila Population Genomics Consortium (DrosEU). Here we present the first analysis of 48 D. melanogaster population samples collected across Europe in 2014. Our analysis uncovers novel patterns of variation at multiple levels: genome-wide neutral SNPs, mtDNA haplotypes, inversions, and TEs showing previously cryptic longitudinal population structure; signatures of selective sweeps shared among populations; presumably adaptive clines in inversions; and geographic variation in TEs. Additionally, we document highly variable microbiota and identify several new Drosophila viruses. Our study reveals novel aspects of the population biology of D. melanogaster and illustrates the power of extensive sampling and pooled sequencing of populations on a continent-wide scale.Genetic variation is the fuel of evolution. However, analyzing dynamics of evolutionary change in natural populations is challenging, genome sequencing of entire populations remains costly and comprehensive sample collection logistically challenging. To tackle this issue and to define relevant spatial and temporal scales of variation for a population genetic model system, the fruit fly Drosophila melanogaster, we have founded the European Drosophila Population Genomics Consortium (DrosEU). Our principal objective is to employ the strengths of this collaborative consortium to extensively sample and sequence natural populations on a continent-wide scale and across distinct timescales. Here we present the first analysis of the first DrosEU pool-sequencing dataset, consisting of 48 population samples collected across the European continent in 2014. The analysis of this comprehensive dataset uncovers novel patterns of variation at multiple levels: genome-wide neutral SNPs, mtDNA haplotypes, inversions and TEs that exhibit previously cryptic longitudinal population structure across the European continent; signatures of selective sweeps shared among the majority of European populations; presumably adaptive clines in inversions; and geographic variation in TEs. Additionally, we document highly variable microbiota among European fruit fly populations and identify several new Drosophila viruses. Our study reveals novel aspects of the population biology of D. melanogaster and illustrates the power of extensive sampling and pooled sequencing of natural populations on a continent-wide scale.


CSH Protocols | 2011

Preparation of cuticles from feeding Drosophila larvae.

David L. Stern; Elio Sucena

The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. Studies of the Drosophila cuticle have focused mainly on first-instar larvae and adult cuticular morphology. Although the cuticles of second- and third-instar larvae are strikingly different from those of the first instar, these differences have been poorly studied. This protocol describes three methods for preparing cuticles from fed larvae. One commonly used procedure involves manually pricking the larvae. A simpler method for preparing larval cuticles is to burst the larvae once they have been mounted. This method is used for first- and second-instar larvae and does not require pricking; it removes the gut contents by popping the rear of the embryo using pressure from the coverslip. If just the right amount of medium is used, the coverslip will be pulled toward the slide, applying pressure on the samples. The larvae usually burst from their posterior ends. Also presented is an alternative procedure designed specifically for the use with third-instar larvae, although the pricking method can be used at this stage.


CSH Protocols | 2012

Rapid mounting of adult Drosophila structures in Hoyer's medium.

David L. Stern; Elio Sucena

The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyers medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyers medium. However, specimens mounted in Hoyers medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyers medium, some dissection is necessary.


bioRxiv | 2018

Spider mites escape bacterial infection by avoiding contaminated food

Flore Zélé; Gonçalo Matos; Alexandre Figueiredo; Catia Eira; Catarina Pinto; Telma G. Laurentino; Elio Sucena; Sara Magalhães

To fight infection, arthropods rely on the deployment of an innate immune response but also upon physical/chemical barriers and avoidance behaviours. However, most studies focus on immunity, with other defensive mechanisms being relatively overlooked. We have previously shown that the spider mite Tetranychus urticae does not mount an induced immune response towards systemic bacterial infections, entailing very high mortality rates. Therefore, we hypothesized that other defence mechanisms may be operating to minimize infection risk. Here, we test (a) if spider mites are also highly susceptible to other infection routes - spraying and feeding - and (b) if they display avoidance behaviours towards infected food. Individuals sprayed with or fed on Escherichia coli or Pseudomonas putida survived less than the control, pointing to a deficient capacity of the gut epithelium, and possibly of the cuticle, to contain bacteria. Additionally, we found that spider mites prefer uninfected food to food contaminated with bacteria, a choice that probably does not rely on olfactory cues. Our results suggest that spider mites may rely mostly on avoidance behaviours to minimize bacterial infection and highlight the multi-layered nature of immune strategies present in arthropods.


CSH Protocols | 2012

Preparation and Mounting of Adult Drosophila Structures in Canada Balsam

David L. Stern; Elio Sucena

The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. To prepare fine museum-quality, permanent slides, it is best to mount specimens in Canada Balsam. It is difficult to give precise recipes for Canada Balsam, because every user seems to prefer a slightly different viscosity. Dilute solutions spread easily and do not dry too rapidly while mounting specimens. The disadvantage is that there is actually less Balsam in a drop of the solution, and when dried, it can contract from the sides of the coverslip, sometimes disturbing the specimen. Unfortunately, there is no substitute for experience when using Canada Balsam. This protocol describes a procedure for mounting adult cuticles in Canada Balsam.


Proceedings of the National Academy of Sciences of the United States of America | 2000

Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby

Elio Sucena; David L. Stern

Collaboration


Dive into the Elio Sucena's collaboration.

Top Co-Authors

Avatar

David L. Stern

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gonçalo Matos

Instituto Gulbenkian de Ciência

View shared research outputs
Top Co-Authors

Avatar

Miodrag Grbic

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia Zeng

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John Ewer

Valparaiso University

View shared research outputs
Researchain Logo
Decentralizing Knowledge