Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Benincà is active.

Publication


Featured researches published by Elisa Benincà.


Nature | 2008

Chaos in a long-term experiment with a plankton community

Elisa Benincà; Jef Huisman; R. Heerkloss; Klaus Jöhnk; Pedro Branco; E.H. van Nes; Marten Scheffer; Stephen P. Ellner

Mathematical models predict that species interactions such as competition and predation can generate chaos. However, experimental demonstrations of chaos in ecology are scarce, and have been limited to simple laboratory systems with a short duration and artificial species combinations. Here, we present the first experimental demonstration of chaos in a long-term experiment with a complex food web. Our food web was isolated from the Baltic Sea, and consisted of bacteria, several phytoplankton species, herbivorous and predatory zooplankton species, and detritivores. The food web was cultured in a laboratory mesocosm, and sampled twice a week for more than 2,300 days. Despite constant external conditions, the species abundances showed striking fluctuations over several orders of magnitude. These fluctuations displayed a variety of different periodicities, which could be attributed to different species interactions in the food web. The population dynamics were characterized by positive Lyapunov exponents of similar magnitude for each species. Predictability was limited to a time horizon of 15–30 days, only slightly longer than the local weather forecast. Hence, our results demonstrate that species interactions in food webs can generate chaos. This implies that stability is not required for the persistence of complex food webs, and that the long-term prediction of species abundances can be fundamentally impossible.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Interannual variability in species composition explained as seasonally entrained chaos

Vasilis Dakos; Elisa Benincà; Egbert H. van Nes; Catharina J. M. Philippart; Marten Scheffer; Jef Huisman

The species composition of plankton, insect and annual plant communities may vary markedly from year to year. Such interannual variability is usually thought to be driven by year-to-year variation in weather conditions. Here we examine an alternative explanation. We studied the effects of regular seasonal forcing on a multi-species predator–prey model consisting of phytoplankton and zooplankton species. The model predicts that interannual variability in species composition can easily arise without interannual variability in external conditions. Seasonal forcing increased the probability of chaos in our model communities, but squeezed these irregular species dynamics within the seasonal cycle. As a result, the population dynamics had a peculiar character. Consistent with long-term time series of natural plankton communities, seasonal variation led to a distinct seasonal succession of species, yet the species composition varied from year to year in an irregular fashion. Our results suggest that interannual variability in species composition is an intrinsic property of multi-species communities in seasonal environments.


PLOS ONE | 2012

Dancing with the Tides: Fluctuations of Coastal Phytoplankton Orchestrated by Different Oscillatory Modes of the Tidal Cycle

Anouk N. Blauw; Elisa Benincà; R.W.P.M. Laane; Naomi Greenwood; Jef Huisman

Population fluctuations are often driven by an interplay between intrinsic population processes and extrinsic environmental forcing. To investigate this interplay, we analyzed fluctuations in coastal phytoplankton concentration in relation to the tidal cycle. Time series of chlorophyll fluorescence, suspended particulate matter (SPM), salinity and temperature were obtained from an automated measuring platform in the southern North Sea, covering 9 years of data at a resolution of 12 to 30 minutes. Wavelet analysis showed that chlorophyll fluctuations were dominated by periodicities of 6 hours 12 min, 12 hours 25 min, 24 hours and 15 days, which correspond to the typical periodicities of tidal current speeds, the semidiurnal tidal cycle, the day-night cycle, and the spring-neap tidal cycle, respectively. During most of the year, chlorophyll and SPM fluctuated in phase with tidal current speed, indicative of alternating periods of sinking and vertical mixing of algal cells and SPM driven by the tidal cycle. Spring blooms slowly built up over several spring-neap tidal cycles, and subsequently expanded in late spring when a strong decline of the SPM concentration during neap tide enabled a temporary “escape” of the chlorophyll concentration from the tidal mixing regime. Our results demonstrate that the tidal cycle is a major determinant of phytoplankton fluctuations at several different time scales. These findings imply that high-resolution monitoring programs are essential to capture the natural variability of phytoplankton in coastal waters.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Species fluctuations sustained by a cyclic succession at the edge of chaos

Elisa Benincà; Bill Ballantine; Stephen P. Ellner; Jef Huisman

Significance The intuitive and popular idea of a balance of nature has been criticized, because species interactions may generate nonequilibrium dynamics, such as oscillations and chaos. However, field evidence of chaos in ecosystems is rare. We report on a coastal community that has displayed striking fluctuations in the abundances of barnacles, mussels, and algae for more than 20 y. Data analysis reveals that these fluctuations reflect a cyclic succession alternating between stabilizing and chaotic dynamics during the species replacement. These results are supported by a simple patch-occupancy model, which predicts very similar dynamics when exposed to seasonal variation. Our findings provide a field demonstration of nonequilibrium coexistence of competing species through a cyclic succession at the edge of chaos. Although mathematical models and laboratory experiments have shown that species interactions can generate chaos, field evidence of chaos in natural ecosystems is rare. We report on a pristine rocky intertidal community located in one of the world’s oldest marine reserves that has displayed a complex cyclic succession for more than 20 y. Bare rock was colonized by barnacles and crustose algae, they were overgrown by mussels, and the subsequent detachment of the mussels returned bare rock again. These processes generated irregular species fluctuations, such that the species coexisted over many generations without ever approaching a stable equilibrium state. Analysis of the species fluctuations revealed a dominant periodicity of about 2 y, a global Lyapunov exponent statistically indistinguishable from zero, and local Lyapunov exponents that alternated systematically between negative and positive values. This pattern indicates that the community moved back and forth between stabilizing and chaotic dynamics during the cyclic succession. The results are supported by a patch-occupancy model predicting similar patterns when the species interactions were exposed to seasonal variation. Our findings show that natural ecosystems can sustain continued changes in species abundances and that seasonal forcing may push these nonequilibrium dynamics to the edge of chaos.


The American Naturalist | 2011

Resonance of Plankton Communities with Temperature Fluctuations

Elisa Benincà; Vasilis Dakos; E.H. van Nes; Jef Huisman; Marten Scheffer

The interplay between intrinsic population dynamics and environmental variation is still poorly understood. It is known, however, that even mild environmental noise may induce large fluctuations in population abundances. This is due to a resonance effect that occurs in communities on the edge of stability. Here, we use a simple predator-prey model to explore the sensitivity of plankton communities to stochastic environmental fluctuations. Our results show that the magnitude of resonance depends on the timescale of intrinsic population dynamics relative to the characteristic timescale of the environmental fluctuations. Predator-prey communities with an intrinsic tendency to oscillate at a period T are particularly responsive to red noise characterized by a timescale of . We compare these theoretical predictions with the timescales of temperature fluctuations measured in lakes and oceans. This reveals that plankton communities will be highly sensitive to natural temperature fluctuations. More specifically, we demonstrate that the relatively fast temperature fluctuations in shallow lakes fall largely within the range to which rotifers and cladocerans are most sensitive, while marine copepods and krill will tend to resonate more strongly with the slower temperature variability of the open ocean.


PLOS ONE | 2017

Space-time analysis of pneumonia hospitalisations in the Netherlands

Elisa Benincà; Michiel van Boven; T.H.J. Hagenaars; Wim van der Hoek

Community acquired pneumonia is a major global public health problem. In the Netherlands there are 40,000–50,000 hospital admissions for pneumonia per year. In the large majority of these hospital admissions the etiologic agent is not determined and a real-time surveillance system is lacking. Localised and temporal increases in hospital admissions for pneumonia are therefore only detected retrospectively and the etiologic agents remain unknown. Here, we perform spatio-temporal analyses of pneumonia hospital admission data in the Netherlands. To this end, we scanned for spatial clusters on yearly and seasonal basis, and applied wavelet cluster analysis on the time series of five main regions. The pneumonia hospital admissions show strong clustering in space and time superimposed on a regular yearly cycle with high incidence in winter and low incidence in summer. Cluster analysis reveals a heterogeneous pattern, with most significant clusters occurring in the western, highly urbanised, and in the eastern, intensively farmed, part of the Netherlands. Quantitatively, the relative risk (RR) of the significant clusters for the age-standardised incidence varies from a minimum of 1.2 to a maximum of 2.2. We discuss possible underlying causes for the patterns observed, such as variations in air pollution.


Ecology Letters | 2018

Probing the limits of predictability: data assimilation of chaotic dynamics in complex food webs

Elias C. Massoud; Jef Huisman; Elisa Benincà; Michael C. Dietze; Willem Bouten; Jasper A. Vrugt

The daunting complexity of ecosystems has led ecologists to use mathematical modelling to gain understanding of ecological relationships, processes and dynamics. In pursuit of mathematical tractability, these models use simplified descriptions of key patterns, processes and relationships observed in nature. In contrast, ecological data are often complex, scale-dependent, space-time correlated, and governed by nonlinear relations between organisms and their environment. This disparity in complexity between ecosystem models and data has created a large gap in ecology between model and data-driven approaches. Here, we explore data assimilation (DA) with the Ensemble Kalman filter to fuse a two-predator-two-prey model with abundance data from a 2600+ day experiment of a plankton community. We analyse how frequently we must assimilate measured abundances to predict accurately population dynamics, and benchmark our population models forecast horizon against a simple null model. Results demonstrate that DA enhances the predictability and forecast horizon of complex community dynamics.


BMC Infectious Diseases | 2017

Temporal and spatial analysis of psittacosis in association with poultry farming in the Netherlands, 2000-2015.

Lenny Hogerwerf; Manon M. C. Holstege; Elisa Benincà; Frederika Dijkstra; Wim van der Hoek

BackgroundHuman psittacosis is a highly under diagnosed zoonotic disease, commonly linked to psittacine birds. Psittacosis in birds, also known as avian chlamydiosis, is endemic in poultry, but the risk for people living close to poultry farms is unknown. Therefore, our study aimed to explore the temporal and spatial patterns of human psittacosis infections and identify possible associations with poultry farming in the Netherlands.MethodsWe analysed data on 700 human cases of psittacosis notified between 01-01-2000 and 01-09-2015. First, we studied the temporal behaviour of psittacosis notifications by applying wavelet analysis. Then, to identify possible spatial patterns, we applied spatial cluster analysis. Finally, we investigated the possible spatial association between psittacosis notifications and data on the Dutch poultry sector at municipality level using a multivariable model.ResultsWe found a large spatial cluster that covered a highly poultry-dense area but additional clusters were found in areas that had a low poultry density. There were marked geographical differences in the awareness of psittacosis and the amount and the type of laboratory diagnostics used for psittacosis, making it difficult to draw conclusions about the correlation between the large cluster and poultry density. The multivariable model showed that the presence of chicken processing plants and slaughter duck farms in a municipality was associated with a higher rate of human psittacosis notifications. The significance of the associations was influenced by the inclusion or exclusion of farm density in the model.ConclusionsOur temporal and spatial analyses showed weak associations between poultry-related variables and psittacosis notifications. Because of the low number of psittacosis notifications available for analysis, the power of our analysis was relative low. Because of the exploratory nature of this research, the associations found cannot be interpreted as evidence for airborne transmission of psittacosis from poultry to the general population. Further research is needed to determine the prevalence of C. psittaci in Dutch poultry. Also, efforts to promote PCR-based testing for C. psittaci and genotyping for source tracing are important to reduce the diagnostic deficit, and to provide better estimates of the human psittacosis burden, and the possible role of poultry.


Ecology Letters | 2009

Coupled predator-prey oscillations in a chaotic food web

Elisa Benincà; Klaus Jöhnk; Reinhard Heerkloss; Jef Huisman


Progress in Oceanography | 2018

Predictability and environmental drivers of chlorophyll fluctuations vary across different time scales and regions of the North Sea

Anouk N. Blauw; Elisa Benincà; R.W.P.M. Laane; Naomi Greenwood; Jef Huisman

Collaboration


Dive into the Elisa Benincà's collaboration.

Top Co-Authors

Avatar

Jef Huisman

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Marten Scheffer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.H. van Nes

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge