Elisa Conde
University of Alcalá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa Conde.
PLOS ONE | 2012
Elisa Conde; Laura Alegre; Ignacio Blanco-Sánchez; David Sáenz-Morales; Elia Aguado-Fraile; Belen Ponte; Edurne Ramos; Ana Saiz; Carlos Jiménez; Angel Ordoñez; Manuel López-Cabrera; Luis del Peso; Manuel O. Landázuri; Fernando Liaño; Rafael Selgas; José Antonio Sánchez-Tomero; María Laura García-Bermejo
Acute tubular necrosis (ATN) caused by ischemia/reperfusion (I/R) during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α), using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant.
PLOS ONE | 2012
Elia Aguado-Fraile; Edurne Ramos; David Sáenz-Morales; Elisa Conde; Ignacio Blanco-Sánchez; Konstantinos Stamatakis; Luis del Peso; Edwin Cuppen; Bernhard Brüne; María Laura García Bermejo
Ischemia/reperfusion (I/R) is at the basis of renal transplantation and acute kidney injury. Molecular mechanisms underlying proximal tubule response to I/R will allow the identification of new therapeutic targets for both clinical settings. microRNAs have emerged as crucial and tight regulators of the cellular response to insults including hypoxia. Here, we have identified several miRNAs involved in the response of the proximal tubule cell to I/R. Microarrays and RT-PCR analysis of proximal tubule cells submitted to I/R mimicking conditions in vitro demonstrated that miR-127 is induced during ischemia and also during reperfusion. miR-127 is also modulated in a rat model of renal I/R. Interference approaches demonstrated that ischemic induction of miR-127 is mediated by Hypoxia Inducible Factor-1alpha (HIF-1α) stabilization. Moreover, miR-127 is involved in cell-matrix and cell-cell adhesion maintenance, since overexpression of miR-127 maintains focal adhesion complex assembly and the integrity of tight junctions. miR-127 also regulates intracellular trafficking since miR-127 interference promotes dextran-FITC uptake. In fact, we have identified the Kinesin Family Member 3B (KIF3B), involved in cell trafficking, as a target of miR-127 in rat proximal tubule cells. In summary, we have described a novel role of miR-127 in cell adhesion and its regulation by HIF-1α. We also identified for the first time KIF3B as a miR-127 target. Both, miR-127 and KIF3B appear as key mediators of proximal epithelial tubule cell response to I/R with potential al application in renal ischemic damage management.
PLOS ONE | 2015
Elia Aguado-Fraile; Edurne Ramos; Elisa Conde; Macarena Rodriguez; Laura Martín-Gómez; Aurora Lietor; Ángel Candela; Belen Ponte; Fernando Liaño; María Laura García-Bermejo
In the last decade, Acute Kidney Injury (AKI) diagnosis and therapy have not notably improved probably due to delay in the diagnosis, among other issues. Precocity and accuracy should be critical parameters in novel AKI biomarker discovery. microRNAs are key regulators of cell responses to many stimuli and they can be secreted to the extracellular environment. Therefore, they can be detected in body fluids and are emerging as novel disease biomarkers. We aimed to identify and validate serum miRNAs useful for AKI diagnosis and management. Using qRT-PCR arrays in serum samples, we determined miRNAs differentially expressed between AKI patients and healthy controls. Statistical and target prediction analysis allowed us to identify a panel of 10 serum miRNAs. This set was further validated, by qRT-PCR, in two independent cohorts of patients with relevant morbi-mortality related to AKI: Intensive Care Units (ICU) and Cardiac Surgery (CS). Statistical correlations with patient clinical parameter were performed. Our results demonstrated that the 10 selected miRNAs (miR-101-3p, miR-127-3p, miR-210-3p, miR-126-3p, miR-26b-5p, miR-29a-3p, miR-146a-5p, miR-27a-3p, miR-93-3p and miR-10a-5p) were diagnostic biomarkers of AKI in ICU patients, exhibiting areas under the curve close to 1 in ROC analysis. Outstandingly, serum miRNAs estimated before CS predicted AKI development later on, thus becoming biomarkers to predict AKI predisposition. Moreover, after surgery, the expression of the miRNAs was modulated days before serum creatinine increased, demonstrating early diagnostic value. In summary, we have identified a set of serum miRNAs as AKI biomarkers useful in clinical practice, since they demonstrate early detection and high diagnostic value and they recognize patients at risk.
Nefrologia | 2013
Elia Aguado-Fraile; Edurne Ramos; Elisa Conde; Macarena Rodriguez; Fernando Liaño; M. Laura García-Bermejo
microRNAs are small, endogenous RNA molecules which are critical for a new step in the regulation of the gene expression. They have become the most critical biological mediators characterized in the last ten years. microRNAs participate in almost every cellular process, therefore their deregulation is associated with the development of a wide range of pathologies, including kidney diseases. Increasing evidence demonstrates that microRNAs are key regulators of the normal kidney function and development, but they are also at the basis of several renal diseases. Recent works have established that these molecules can be secreted to extracellular environments, enabling their detection in peripheral body fluids such as urine and serum. Moreover, circulating miRNAs detected in body fluids turn into suitable biomarkers of kidney diseases, including acute kidney injury. This new generation of renal biomarkers could have a great impact in the clinical practice, significantly contributing to improve patient management. In this review, we discuss over the implication of microRNAs in normal kidney function and homeostasis as well as the role of circulating miRNAs as novel biomarkers of kidney diseases, focusing on their potential usefulness in acute kidney injury management.
Cellular Physiology and Biochemistry | 2009
David Sáenz-Morales; Elisa Conde; María M. Escribese; María García-Martos; Laura Alegre; Ignacio Blanco-Sánchez; María Laura García-Bermejo
ERK1/2 has been reported to be activated in the postischemic kidney but its precise role in ischemia/reperfusion (I/R) injury remains unclear. Therefore, we have studied the expression of ERK1/2 and its contribution to cytoskeleton organization and cell adhesion structures in proximal tubular cells, all affected during I/R. We observe ERK1/2 activation at 24 hours of reperfusion in an in vivo model of I/R, when acute tubular necrosis (ATN) is most prominent. In addition, by means of an in vitro model of hypoxia/reoxygenation (H/R) in rat proximal NRK-52E cells we show that p-ERK1/2 is strongly induced early during reoxygenation. Moreover, we also demonstrate that ROS generation contributed to this induction. ERK1/2 activation is contemporary with cell-cell adhesion disruption during reoxygenation but the use of U0126 did not have effect on adherens junctions (AJ) and tight junctions (TJ) disassembly, neither on epithelial monolayer permeability. On the contrary, ERK1/2 affects cytoskeleton organization and focal complexes assembly during H/R, since U0126 improved actin and tubulin cytoskeleton structure, reduced cell contraction and prevented paxillin redistribution. In summary, ERK1/2 signalling plays an essential role in I/R induced injury, mediating proximal cell adhesive alterations which lead to tubular damage and ultimately might compromise renal function.
BMC Nephrology | 2007
Maria M. Escribese; Elisa Conde; Ana Martín; David Sáenz-Morales; David Sancho; Guillermo Pérez de Lema; Javier Lucio-Cazana; Francisco Sánchez-Madrid; María Laura García-Bermejo; Francisco Mampaso
BackgroundMercuric chloride (HgCl2) induces an autoimmune nephritis in the Brown Norway (BN) rats characterized by anti-glomerular basement membrane antibodies (anti-GBM Ab) deposition, proteinuria and a severe interstitial nephritis, all evident at day 13 of the disease. We assessed the effects of all-trans retinoic acid (at-RA) in this experimental model. At-RA is a vitamin A metabolite which has shown beneficial effects on several nephropathies, even though no clear targets for at-RA were provided.MethodsWe separated animals in four different experimental groups (HgCl2, HgCl2+at-RA, at-RA and vehicle). From each animal we collected, at days 0 and 13, numerous biological samples: urine, to measure proteinuria by colorimetry; blood to determine VLA-4 expression by flow citometry; renal tissue to study the expression of VCAM-1 by Western blot, the presence of cellular infiltrates by immunohistochemistry, the IgG deposition by immunofluorescence, and the cytokines expression by RT-PCR. Additionally, adhesion assays to VCAM-1 were performed using K562 α4 transfectant cells. ANOVA tests were used for statistical significance estimation.ResultsWe found that at-RA significantly decreased the serum levels of anti-GBM and consequently its deposition along the glomerular membrane. At-RA markedly reduced proteinuria as well as the number of cellular infiltrates in the renal interstitium, the levels of TNF-α and IL-1β cytokines and VCAM-1 expression in renal tissue. Moreover, we reported here for the first time in an in vivo model that at-RA reduced, to basal levels, the expression of VLA-4 (α4β1) integrin induced by mercury on peripheral blood leukocytes (PBLs). In addition, using K562 α4 stable transfectant cells, we found that at-RA inhibited VLA-4 dependent cell adhesion to VCAM-1.ConclusionHere we demonstrate a therapeutic effect of at-RA on an autoimmune experimental nephritis model in rats. We report a significant reduction of the VLA-4 integrin expression on PBLs as well as the inhibition of the VLA4/VCAM1-dependent leukocyte adhesion by at-RA treatment. Thereby we point out the VLA-4 integrin as a target for at-RA in vivo.
Kidney International | 2010
David Sáenz-Morales; Elisa Conde; Ignacio Blanco-Sánchez; Belen Ponte; Elia Aguado-Fraile; Gonzalo de las Casas; María García-Martos; Laura Alegre; Maria M. Escribese; Ana Molina; Carmen Santiuste; Fernando Liaño; María-Laura García-Bermejo
To investigate mechanisms conferring susceptibility or resistance to renal ischemia, we used two rat strains known to exhibit different responses to ischemia-reperfusion. We exposed proximal tubule cells isolated from Sprague Dawley or Brown Norway rats, to a protocol of hypoxia, followed by reoxygenation in vitro. The cells isolated from both rat strains exhibited comparable responses in the disruption of intercellular adhesions and cytoskeletal damage. In vivo, after 24 h of reperfusion, both strains showed similar degrees of injury. However, after 7 days of reperfusion, renal function and tubular structure almost completely recovered and inflammation resolved, but only in Brown Norway rats. Hypoxia-inducible factor-dependent gene expression, ERK1/2, and Akt activation were different in the two strains. Inflammatory mediators MCP-1, IL-10, INF-gamma, IL-1beta, and TNF-alpha were similarly induced at 24 h in both strains but were downregulated earlier in Brown Norway rats, which correlated with shorter NFkappaB activation in the kidney. Moreover, VLA-4 expression in peripheral blood lymphocytes and VCAM-1 expression in kidney tissues were initially similar at 24 h but reached basal levels earlier in Brown Norway rats. The faster resolution of inflammation in Brown Norway rats suggests that this strain might be a useful experimental model to determine the mechanisms that promote repair of renal ischemia-reperfusion injury.
Journal of Pharmacology and Experimental Therapeutics | 2007
Maria M. Escribese; Elisa Conde; David Sáenz-Morales; Peter L. Hordijk; María Laura García-Bermejo
The inflammatory response is tightly regulated by several mediators that promote the adhesive and migratory capacities of different cell types, including peripheral blood mononuclear cells (PBMCs). Our laboratory has previously characterized the inflammatory response developed in the experimental model of mercuric chloride (HgCl2)-induced nephritis in Brown Norway rats as an acute inflammatory response dependent on very late antigen (VLA)-4. This response can be modulated by all-trans-retinoic acid (at-RA), a vitamin A metabolite that regulates a broad range of biological processes and exhibits anti-inflammatory properties. Based on this in vivo experimental model, we have established a VLA-4-dependent ex vivo system to study the effect of at-RA on PBMC polarization, adhesion, and migration and to elicit new mechanisms triggered by at-RA for abrogating an inflammatory response. We found that at-RA significantly reduces the VLA-4-dependent migration of PBMCs activated in vivo. In addition, we demonstrated by spreading assays that in vivo at-RA treatment abrogates the acquisition of a polarized cell phenotype. In fact, at-RA inhibits the actin polymerization required for cell morphology changes, and it alters the distribution of F-actin and VLA-4 integrin in focal contacts, essential for cell adhesion. Moreover, we describe that at-RA also abrogates the redistribution of Rac1 and RhoA, important proteins implicated in the dynamic process of cell movement. In summary, we demonstrate the capacity of at-RA to block the acquisition of an appropriate migratory phenotype in PBMCs as a new mechanism underlying the anti-inflammatory effects of this compound.
Journal of Cell Biology | 2017
David Labrousse-Arias; Emma Martínez-Alonso; María Corral-Escariz; Raquel Bienes-Martínez; Jaime Berridy; Leticia Serrano-Oviedo; Elisa Conde; María-Laura García-Bermejo; José M. Giménez-Bachs; Antonio S. Salinas-Sánchez; Ricardo Sánchez-Prieto; Masahiro Yao; Marina Lasa; María J. Calzada
Vascular cell adhesion molecule 1 (VCAM-1) is an adhesion molecule assigned to the activated endothelium mediating immune cells adhesion and extravasation. However, its expression in renal carcinomas inversely correlates with tumor malignancy. Our experiments in clear cell renal cell carcinoma (ccRCC) cell lines demonstrated that von Hippel Lindau (VHL) loss, hypoxia, or PHD (for prolyl hydroxylase domain–containing proteins) inactivation decreased VCAM-1 levels through a transcriptional mechanism that was independent of the hypoxia-inducible factor and dependent on the nuclear factor &kgr;B signaling pathway. Conversely, VHL expression leads to high VCAM-1 levels in ccRCC, which in turn leads to better outcomes, possibly by favoring antitumor immunity through VCAM-1 interaction with the &agr;4&bgr;1 integrin expressed in immune cells. Remarkably, in ccRCC human samples with VHL nonmissense mutations, we observed a negative correlation between VCAM-1 levels and ccRCC stage, microvascular invasion, and symptom presentation, pointing out the clinical value of VCAM-1 levels as a marker of ccRCC progression.
Oncotarget | 2015
Konstantinos Stamatakis; Marta Jimenez-Martinez; Alba Jimenez-Segovia; Isabel Chico-Calero; Elisa Conde; Javier Galán-Martínez; Julia Ruiz; Alejandro Pascual; Beatriz Barrocal; Ricardo López-Pérez; María Laura García-Bermejo; Manuel Fresno
Cyclooxygenase2 (COX2) has been associated with cell growth, invasiveness, tumor progression and metastasis of colorectal carcinomas. However, the downstream prostaglandin (PG)-PG receptor pathway involved in these effects is poorly characterized. We studied the PG-pathway in gene expression databases and we found that PTGS2 (prostaglandin G/H synthase and cyclooxygenase) and PTGES (prostaglandin E synthase) are co-expressed in human colorectal tumors. Moreover, we detected that COX2 and microsomal Prostaglandin E2 synthase 1 (mPGES1) proteins are both up-regulated in colorectal human tumor biopsies. Using colon carcinoma cell cultures we found that COX2 overexpression significantly increased mPGES1 mRNA and protein. This up-regulation was due to an increase in early growth response 1 (EGR1) levels and its transcriptional activity. EGR1 was induced by COX2-generated PGF2α. A PGF2α receptor antagonist, or EGR1 silencing, inhibited the mPGES1 induction by COX2 overexpression. Moreover, using immunodeficient mice, we also demonstrated that both COX2- and mPGES1-overexpressing carcinoma cells were more efficient forming tumors. Our results describe for the first time the molecular pathway correlating PTGS2 and PTGES in colon cancer progression. We demonstrated that in this pathway mPGES1 is induced by COX2 overexpression, via autocrine PGs release, likely PGF2α, through an EGR1-dependent mechanism. This signaling provides a molecular explanation to PTGS2 and PTGES association and contribute to colon cancer advance, pointing out novel potential therapeutic targets in this oncological context.