Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Majounie is active.

Publication


Featured researches published by Elisa Majounie.


Neuron | 2011

A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD

Alan E. Renton; Elisa Majounie; Adrian James Waite; Javier Simón-Sánchez; Sara Rollinson; J. Raphael Gibbs; Jennifer C. Schymick; Hannu Laaksovirta; John C. van Swieten; Liisa Myllykangas; Hannu Kalimo; Anders Paetau; Yevgeniya Abramzon; Anne M. Remes; Alice Kaganovich; Sonja W. Scholz; Jamie Duckworth; Jinhui Ding; Daniel W. Harmer; Dena Hernandez; Janel O. Johnson; Kin Mok; Mina Ryten; Danyah Trabzuni; Rita Guerreiro; Richard W. Orrell; James Neal; Alexandra Murray; Justin Peter Pearson; Iris E. Jansen

The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK, and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one-third of familial ALS cases of outbred European descent, making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.


The New England Journal of Medicine | 2013

TREM2 Variants in Alzheimer's Disease

Rita Guerreiro; Aleksandra Wojtas; Jose Bras; Minerva M. Carrasquillo; Ekaterina Rogaeva; Elisa Majounie; Carlos Cruchaga; Celeste Sassi; John Kauwe; Steven G. Younkin; Lili-Naz Hazrati; John Collinge; Jennifer M. Pocock; Tammaryn Lashley; Julie Williams; Jean Charles Lambert; Philippe Amouyel; Alison Goate; Rosa Rademakers; Kevin Morgan; John Powell; Peter St George-Hyslop; Andrew Singleton; John Hardy

BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimers disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimers disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimers disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimers disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimers disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimers disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimers disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimers disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimers disease. (Funded by Alzheimers Research UK and others.).


Lancet Neurology | 2012

Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: A cross-sectional study

Elisa Majounie; Alan E. Renton; Kin Mok; Elise G.P. Dopper; Adrian James Waite; Sara Rollinson; Adriano Chiò; Gabriella Restagno; Nayia Nicolaou; Javier Simón-Sánchez; John C. van Swieten; Yevgeniya Abramzon; Janel O. Johnson; Michael Sendtner; Roger Pamphlett; Richard W. Orrell; Simon Mead; Katie Sidle; Henry Houlden; Jonathan D. Rohrer; Karen E. Morrison; Hardev Pall; Kevin Talbot; Olaf Ansorge; Dena Hernandez; Sampath Arepalli; Mario Sabatelli; Gabriele Mora; Massimo Corbo; Fabio Giannini

Summary Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases. Funding Full funding sources listed at end of paper (see Acknowledgments).


Brain | 2012

Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72

Adriano Chiò; Giuseppe Borghero; Gabriella Restagno; Gabriele Mora; Carsten Drepper; Bryan J. Traynor; Michael Sendtner; Maura Brunetti; Irene Ossola; Andrea Calvo; Maura Pugliatti; Maria Alessandra Sotgiu; Maria Rita Murru; Maria Giovanna Marrosu; Francesco Marrosu; Kalliopi Marinou; Jessica Mandrioli; Patrizia Sola; Claudia Caponnetto; Gianluigi Mancardi; Paola Mandich; Vincenzo La Bella; Rossella Spataro; Amelia Conte; Maria Rosaria Monsurrò; Gioacchino Tedeschi; Fabrizio Pisano; Ilaria Bartolomei; Fabrizio Salvi; Giuseppe Lauria Pinter

A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ~40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis-frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis-frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6-7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7-2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for ~60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis.


The New England Journal of Medicine | 2012

Repeat Expansion in C9ORF72 in Alzheimer's Disease

Elisa Majounie; Yevgeniya Abramzon; Alan E. Renton; Rodney T. Perry; Susan Spear Bassett; Olga Pletnikova; Juan C. Troncoso; John Hardy; Andrew Singleton; Bryan J. Traynor

A hexanucleotide repeat expansion in the gene C9ORF72 has been implicated in the development of amyotrophic lateral sclerosis and frontotemporal dementia. The variant has also been found in a small percentage of patients with probable late-onset Alzheimers disease.


Neurology | 2012

Extensive genetics of ALS: a population-based study in Italy.

Adriano Chiò; Andrea Calvo; Letizia Mazzini; Roberto Cantello; Gabriele Mora; Cristina Moglia; Lucia Corrado; Sandra D'Alfonso; Elisa Majounie; Alan E. Renton; Fabrizio Pisano; Irene Ossola; Maura Brunetti; Bryan J. Traynor; Gabriella Restagno

Objective: To assess the frequency and clinical characteristics of patients with mutations of major amyotrophic lateral sclerosis (ALS) genes in a prospectively ascertained, population-based epidemiologic series of cases. Methods: The study population includes all ALS cases diagnosed in Piemonte, Italy, from January 2007 to June 2011. Mutations of SOD1, TARDBP, ANG, FUS, OPTN, and C9ORF72 have been assessed. Results: Out of the 475 patients included in the study, 51 (10.7%) carried a mutation of an ALS-related gene (C9ORF72, 32; SOD1, 10; TARDBP, 7; FUS, 1; OPTN, 1; ANG, none). A positive family history for ALS or frontotemporal dementia (FTD) was found in 46 (9.7%) patients. Thirty-one (67.4%) of the 46 familial cases and 20 (4.7%) of the 429 sporadic cases had a genetic mutation. According to logistic regression modeling, besides a positive family history for ALS or FTD, the chance to carry a genetic mutation was related to the presence of comorbid FTD (odds ratio 3.5; p = 0.001), and age at onset ≤54 years (odds ratio 1.79; p = 0.012). Conclusions: We have found that ∼11% of patients with ALS carry a genetic mutation, with C9ORF72 being the commonest genetic alteration. Comorbid FTD or a young age at onset are strong indicators of a possible genetic origin of the disease.


American Journal of Human Genetics | 2016

Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

Suzanne Lesage; Valérie Drouet; Elisa Majounie; Vincent Deramecourt; Maxime Jacoupy; Aude Nicolas; Florence Cormier-Dequaire; Sidi mohamed Hassoun; Claire Pujol; Sorana Ciura; Zoi Erpapazoglou; Tatiana Usenko; Claude-Alain Maurage; Mourad Sahbatou; Stefan Liebau; Jinhui Ding; Başar Bilgiç; Murat Emre; Nihan Erginel-Unaltuna; Gamze Guven; François Tison; Christine Tranchant; Marie Vidailhet; Jean-Christophe Corvol; Paul Krack; Anne-Louise Leutenegger; Michael A. Nalls; Dena Hernandez; Peter Heutink; J. Raphael Gibbs

Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression.


Brain | 2014

Parkinson's disease in GTP cyclohydrolase 1 mutation carriers

Niccolo E. Mencacci; Ioannis U. Isaias; Martin M. Reich; Christos Ganos; Vincent Plagnol; James M. Polke; Jose Bras; Joshua Hersheson; Maria Stamelou; Alan Pittman; Alastair J. Noyce; Kin Mok; Thomas Opladen; Erdmute Kunstmann; Sybille Hodecker; Alexander Münchau; Jens Volkmann; Samuel Samnick; Katie Sidle; Tina Nanji; Mary G. Sweeney; Henry Houlden; Amit Batla; Anna Zecchinelli; Gianni Pezzoli; Giorgio Marotta; Andrew J. Lees; Paulo Alegria; Paul Krack; Florence Cormier-Dequaire

Mutations in the gene encoding the dopamine-synthetic enzyme GTP cyclohydrolase-1 (GCH1) cause DOPA-responsive dystonia (DRD). Mencacci et al. demonstrate that GCH1 variants are associated with an increased risk of Parkinsons disease in both DRD pedigrees and in patients with Parkinsons disease but without a family history of DRD.


Neurobiology of Aging | 2012

C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population.

Mario Sabatelli; Francesca Luisa Conforti; Marcella Zollino; Gabriele Mora; Maria Rosaria Monsurrò; Paolo Volanti; Kalliopi Marinou; Fabrizio Salvi; Massimo Corbo; Fabio Giannini; Stefania Battistini; Silvana Penco; Christian Lunetta; Aldo Quattrone; Antonio Gambardella; Giancarlo Logroscino; Isabella Laura Simone; Ilaria Bartolomei; Fabrizio Pisano; Gioacchino Tedeschi; Amelia Conte; Rossella Spataro; Vincenzo La Bella; Claudia Caponnetto; Gianluigi Mancardi; Paola Mandich; Patrizia Sola; Jessica Mandrioli; Alan E. Renton; Elisa Majounie

It has been recently reported that a large proportion of patients with familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72. We have assessed 1757 Italian sporadic ALS cases, 133 from Sardinia, 101 from Sicily, and 1523 from mainland Italy. Sixty (3.7%) of 1624 mainland Italians and Sicilians and 9 (6.8%) of the 133 Sardinian sporadic ALS cases carried the pathogenic repeat expansion. None of the 619 regionally matched control samples (1238 chromosomes) carried the expansion. Twenty-five cases (36.2%) had behavioral FTD in addition to ALS. FTD or unspecified dementia was also detected in 19 pedigrees (27.5%) in first-degree relatives of ALS patients. Cases carrying the C9ORF72 hexanucleotide expansion survived 1 year less than cases who did not carry this mutation. In conclusion, we found that C9ORF72 hexanucleotide repeat expansions represents a sizeable proportion of apparent sporadic ALS in the Italian and Sardinian population, representing by far the most common mutation in Italy and the second most common in Sardinia.


Brain | 2015

Common polygenic variation enhances risk prediction for Alzheimer's disease.

Valentina Escott-Price; Rebecca Sims; Christian Bannister; D Harold; Maria Vronskaya; Elisa Majounie; Nandini Badarinarayan; Kevin Morgan; Peter Passmore; Clive Holmes; John Powell; Carol Brayne; Michael Gill; Simon Mead; Alison Goate; Carlos Cruchaga; Jean-Charles Lambert; Cornelia van Duijn; Wolfgang Maier; Alfredo Ramirez; Peter Holmans; Lesley Jones; John Hardy; Sudha Seshadri; Gerard D. Schellenberg; Philippe Amouyel; Julie Williams

The identification of subjects at high risk for Alzheimers disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimers disease and the accuracy of Alzheimers disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimers Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimers disease (P = 4.9 × 10(-26)). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10(-19)). The best prediction accuracy AUC = 78.2% (95% confidence interval 77-80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimers disease has a significant polygenic component, which has predictive utility for Alzheimers disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.

Collaboration


Dive into the Elisa Majounie's collaboration.

Top Co-Authors

Avatar

Andrew Singleton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alan E. Renton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Huw R. Morris

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Bryan J. Traynor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dena Hernandez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriele Mora

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

J. Raphael Gibbs

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge