Elisa Mastantuono
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa Mastantuono.
Circulation-cardiovascular Genetics | 2014
Naomasa Makita; Nobue Yagihara; Lia Crotti; Christopher N. Johnson; Britt M. Beckmann; Michelle S. Roh; Daichi Shigemizu; Peter Lichtner; Taisuke Ishikawa; Takeshi Aiba; Tessa Homfray; Elijah R. Behr; Didier Klug; Isabelle Denjoy; Elisa Mastantuono; Daniel Theisen; Tatsuhiko Tsunoda; Wataru Satake; Tatsushi Toda; Hidewaki Nakagawa; Yukiomi Tsuji; Takeshi Tsuchiya; Hirokazu Yamamoto; Yoshihiro Miyamoto; Naoto Endo; Akinori Kimura; Kouichi Ozaki; Hideki Motomura; Kenji Suda; Toshihiro Tanaka
Background—Genetic predisposition to life-threatening cardiac arrhythmias such as congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype–phenotype correlations associated with calmodulin mutations. Methods and Results—We used conventional and next-generation sequencing approaches, including exome analysis, in genotype-negative LQTS probands. We identified 5 novel de novo missense mutations in CALM2 in 3 subjects with LQTS (p.N98S, p.N98I, p.D134H) and 2 subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1 to 9 years. Three of 5 probands had cardiac arrest and 1 of these subjects did not survive. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of 5 probands responded to &bgr;-blocker therapy, whereas 1 subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within Ca2+-binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced Ca2+-binding affinity. Conclusions—CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT.
Circulation-cardiovascular Genetics | 2016
Lia Crotti; Annukka M. Lahtinen; Carla Spazzolini; Elisa Mastantuono; Maria Cristina Monti; Caterina Morassutto; Gianfranco Parati; Marshall Heradien; Althea Goosen; Peter Lichtner; Thomas Meitinger; Paul A. Brink; Kimmo Kontula; Heikki Swan; Peter J. Schwartz
Background— Long-QT syndrome is an inherited cardiac channelopathy characterized by delayed repolarization, risk of life-threatening arrhythmia, and significant clinical variability even within families. Three single-nucleotide polymorphisms (SNPs) in the 3′ untranslated region of KCNQ1 were recently suggested to be associated with suppressed gene expression and hence decreased disease severity when located on the same haplotype with a disease-causing KCNQ1 mutation. We sought to replicate this finding in a larger and a genetically more homogeneous population of KCNQ1 mutation carriers. Methods and Results— The 3 SNPs (rs2519184, rs8234, and rs10798) were genotyped in a total of 747 KCNQ1 mutation carriers with A341V, G589D, or IVS7-2A>G mutation. The SNP haplotypes were assigned based on family trees. The SNP allele frequencies and clinical severity differed between the 3 mutation groups. The different SNP haplotypes were neither associated with heart rate–corrected QT interval duration (QTc) nor cardiac events in any of the 3 mutation groups. When the mutation groups were combined, the derived SNP haplotype of rs8234 and rs10798 located on the same haplotype with the mutation was associated with a shorter QTc interval ( P <0.05) and a reduced occurrence of cardiac events ( P <0.01), consistent with the previous finding. However, when the population-specific mutation was controlled for, both associations were no longer evident. Conclusions— 3′ Untranslated region SNPs are not acting as genetic modifiers in a large group of LQT1 patients. The confounding effect of merging a genetically and clinically heterogeneous group of patients needs to be taken into account when studying disease modifiers.
Circulation-cardiovascular Genetics | 2016
Lia Crotti; Annukka M. Lahtinen; Carla Spazzolini; Elisa Mastantuono; Mari Cristina A Monti; Caterina Morassutto; Gianfranco Parati; Marshall Heradien; Althea Goosen; Peter Lichtner; Thomas Meitinger; Paul A. Brink; Kimmo Kontula; Heikki Swan; Peter J. Schwartz
We welcome the opportunity to respond to the expected comments by Amin et al regarding our article on the modifying role of 3′ untranslated region (3′UTR) single-nucleotide polymorphisms (SNPs) in type 1 long-QT syndrome patients.1 In the original cohort studied by Amin et al,2 the analysis of 3 small families supported the modifying role of 3′UTR SNPs. Amin et al now propose, as a possible reason for the different results, the predominance of haploinsufficient type 1 long-QT syndrome–causative mutations in our population. However, in our 3 founder families, 2 ( KCNQ1 A341V and also KCNQ1 IVS7-2A>G) of the 3 mutations have a dominant-negative effect,3,4 and only 1 ( KCNQ1 -G589D) reduces the ability of the mutated proteins to form functional tetramers leading to haploinsufficiency.5 This is exactly the same pattern of their 3 families: 2 have a dominant-negative effect …
The EMBO Journal | 2018
Tatjana Dorn; Jessica Kornherr; Elvira Parrotta; Dorota Zawada; Harold Ayetey; Gianluca Santamaria; Laura Iop; Elisa Mastantuono; Daniel Sinnecker; Alexander Goedel; Ralf J. Dirschinger; Ilaria My; Svenja Laue; Tarik Bozoglu; Christian Baarlink; Tilman Ziegler; Elisabeth Graf; Rabea Hinkel; Giovanni Cuda; Stefan Kääb; Andrew A. Grace; Robert Grosse; Christian Kupatt; Thomas Meitinger; Austin Smith; Karl-Ludwig Laugwitz; Alessandra Moretti
Cell–cell and cell–matrix interactions guide organ development and homeostasis by controlling lineage specification and maintenance, but the underlying molecular principles are largely unknown. Here, we show that in human developing cardiomyocytes cell–cell contacts at the intercalated disk connect to remodeling of the actin cytoskeleton by regulating the RhoA‐ROCK signaling to maintain an active MRTF/SRF transcriptional program essential for cardiomyocyte identity. Genetic perturbation of this mechanosensory pathway activates an ectopic fat gene program during cardiomyocyte differentiation, which ultimately primes the cells to switch to the brown/beige adipocyte lineage in response to adipogenesis‐inducing signals. We also demonstrate by in vivo fate mapping and clonal analysis of cardiac progenitors that cardiac fat and a subset of cardiac muscle arise from a common precursor expressing Isl1 and Wt1 during heart development, suggesting related mechanisms of determination between the two lineages.
American Journal of Human Genetics | 2018
Arcangela Iuso; Marit Wiersma; Hans-Joachim Schüller; Ben Pode-Shakked; Dina Marek-Yagel; Mathias Grigat; Thomas Schwarzmayr; Riccardo Berutti; Bader Alhaddad; Bart Kanon; Nicola A. Grzeschik; Jürgen G. Okun; Zeev Perles; Yishay Salem; Ortal Barel; Amir Vardi; Marina Rubinshtein; Tal Tirosh; Gal Dubnov-Raz; Ana C. Messias; Caterina Terrile; Iris Barshack; Alex Volkov; Camilla Avivi; Eran Eyal; Elisa Mastantuono; Muhamad Kumbar; Shachar Abudi; Matthias Braunisch; Tim M. Strom
Coenzyme A (CoA) is an essential metabolic cofactor used by around 4% of cellular enzymes. Its role is to carry and transfer acetyl and acyl groups to other molecules. Cells can synthesize CoA de novo from vitamin B5 (pantothenate) through five consecutive enzymatic steps. Phosphopantothenoylcysteine synthetase (PPCS) catalyzes the second step of the pathway during which phosphopantothenate reacts with ATP and cysteine to form phosphopantothenoylcysteine. Inborn errors of CoA biosynthesis have been implicated in neurodegeneration with brain iron accumulation (NBIA), a group of rare neurological disorders characterized by accumulation of iron in the basal ganglia and progressive neurodegeneration. Exome sequencing in five individuals from two unrelated families presenting with dilated cardiomyopathy revealed biallelic mutations in PPCS, linking CoA synthesis with a cardiac phenotype. Studies in yeast and fruit flies confirmed the pathogenicity of identified mutations. Biochemical analysis revealed a decrease in CoA levels in fibroblasts of all affected individuals. CoA biosynthesis can occur with pantethine as a source independent from PPCS, suggesting pantethine as targeted treatment for the affected individuals still alive.
American Journal of Human Genetics | 2017
René G. Feichtinger; Monika Oláhová; Yoshihito Kishita; Caterina Garone; Laura S. Kremer; Mikako Yagi; Takeshi Uchiumi; Alexis A. Jourdain; Kyle Thompson; Aaron R. D'Souza; Robert Kopajtich; Charlotte L. Alston; Johannes Koch; Wolfgang Sperl; Elisa Mastantuono; Tim M. Strom; Saskia B. Wortmann; Thomas Meitinger; Germaine Pierre; Patrick F. Chinnery; Zofia M.A. Chrzanowska-Lightowlers; Robert N. Lightowlers; Salvatore DiMauro; Sarah E. Calvo; Vamsi K. Mootha; Maurizio Moggio; Monica Sciacco; Giacomo P. Comi; Dario Ronchi; Kei Murayama
Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals’ samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp−/− mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp−/− MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.
Archive | 2018
Arcangela Iuso; Bader Alhaddad; Corina Weigel; Urania Kotzaeridou; Elisa Mastantuono; Thomas Schwarzmayr; Elisabeth Graf; Caterina Terrile; Holger Prokisch; Tim M. Strom; Georg F. Hoffmann; Thomas Meitinger; Tobias B. Haack
SLC25A42 is an inner mitochondrial membrane protein which has been shown to transport coenzyme A through a lipid bilayer in vitro. A homozygous missense variant in this gene has been recently reported in 13 subjects of Arab descent presenting with mitochondriopathy with variable clinical manifestations. By exome sequencing, we identified two additional individuals carrying rare variants in this gene. One subject was found to carry the previously reported missense variant in homozygous state, while the second subject carried a homozygous canonical splice site variant resulting in a splice defect. With the identification of two additional cases, we corroborate the association between rare variants in SLC25A42 and a clinical presentation characterized by myopathy, developmental delay, lactic acidosis, and encephalopathy. Furthermore, we highlight the biochemical consequences of the splice defect by measuring a mild decrease of coenzyme A content in SLC25A42-mutant fibroblasts.
Circulation-cardiovascular Genetics | 2016
Lia Crotti; Annukka M. Lahtinen; Carla Spazzolini; Elisa Mastantuono; Maria Cristina Monti; Caterina Morassutto; Gianfranco Parati; Marshall Heradien; Althea Goosen; Peter Lichtner; Thomas Meitinger; Paul A. Brink; Kimmo Kontula; Heikki Swan; Peter J. Schwartz
Background— Long-QT syndrome is an inherited cardiac channelopathy characterized by delayed repolarization, risk of life-threatening arrhythmia, and significant clinical variability even within families. Three single-nucleotide polymorphisms (SNPs) in the 3′ untranslated region of KCNQ1 were recently suggested to be associated with suppressed gene expression and hence decreased disease severity when located on the same haplotype with a disease-causing KCNQ1 mutation. We sought to replicate this finding in a larger and a genetically more homogeneous population of KCNQ1 mutation carriers. Methods and Results— The 3 SNPs (rs2519184, rs8234, and rs10798) were genotyped in a total of 747 KCNQ1 mutation carriers with A341V, G589D, or IVS7-2A>G mutation. The SNP haplotypes were assigned based on family trees. The SNP allele frequencies and clinical severity differed between the 3 mutation groups. The different SNP haplotypes were neither associated with heart rate–corrected QT interval duration (QTc) nor cardiac events in any of the 3 mutation groups. When the mutation groups were combined, the derived SNP haplotype of rs8234 and rs10798 located on the same haplotype with the mutation was associated with a shorter QTc interval ( P <0.05) and a reduced occurrence of cardiac events ( P <0.01), consistent with the previous finding. However, when the population-specific mutation was controlled for, both associations were no longer evident. Conclusions— 3′ Untranslated region SNPs are not acting as genetic modifiers in a large group of LQT1 patients. The confounding effect of merging a genetically and clinically heterogeneous group of patients needs to be taken into account when studying disease modifiers.
Circulation-cardiovascular Genetics | 2016
Lia Crotti; Annukka M. Lahtinen; Carla Spazzolini; Elisa Mastantuono; Maria Cristina Monti; Caterina Morassutto; Gianfranco Parati; Marshall Heradien; Althea Goosen; Peter Lichtner; Thomas Meitinger; Paul A. Brink; Kimmo Kontula; Heikki Swan; Peter J. Schwartz
Background— Long-QT syndrome is an inherited cardiac channelopathy characterized by delayed repolarization, risk of life-threatening arrhythmia, and significant clinical variability even within families. Three single-nucleotide polymorphisms (SNPs) in the 3′ untranslated region of KCNQ1 were recently suggested to be associated with suppressed gene expression and hence decreased disease severity when located on the same haplotype with a disease-causing KCNQ1 mutation. We sought to replicate this finding in a larger and a genetically more homogeneous population of KCNQ1 mutation carriers. Methods and Results— The 3 SNPs (rs2519184, rs8234, and rs10798) were genotyped in a total of 747 KCNQ1 mutation carriers with A341V, G589D, or IVS7-2A>G mutation. The SNP haplotypes were assigned based on family trees. The SNP allele frequencies and clinical severity differed between the 3 mutation groups. The different SNP haplotypes were neither associated with heart rate–corrected QT interval duration (QTc) nor cardiac events in any of the 3 mutation groups. When the mutation groups were combined, the derived SNP haplotype of rs8234 and rs10798 located on the same haplotype with the mutation was associated with a shorter QTc interval ( P <0.05) and a reduced occurrence of cardiac events ( P <0.01), consistent with the previous finding. However, when the population-specific mutation was controlled for, both associations were no longer evident. Conclusions— 3′ Untranslated region SNPs are not acting as genetic modifiers in a large group of LQT1 patients. The confounding effect of merging a genetically and clinically heterogeneous group of patients needs to be taken into account when studying disease modifiers.
Giornale italiano di cardiologia | 2013
Lia Crotti; Cinzia Dossena; Elisa Mastantuono; Federica Dagradi; Peter J. Schwartz
: Impressive progress has been made in the last 40 years in the understanding of the role of QT interval and its genetic basis in sudden cardiac death risk. The present review will provide a first practical part on QT measurement and its correction for heart rate. Subsequently, the long QT syndrome and short QT syndrome will be described, as the two main arrhythmogenic congenital heart diseases characterized by abnormal QT length. Furthermore, we will discuss about prolonged QT in the pathogenesis of sudden infant death syndrome and the preventive role of neonatal ECG screening. The prognostic role of QT interval will be presented also in the context of myocardial infarction and hypertrophic cardiomyopathy. The last part of the review is devoted to future perspectives and latest results on modifier genes.