Elisa S. Na
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa S. Na.
Nature | 2011
Anita E. Autry; Megumi Adachi; Elena Nosyreva; Elisa S. Na; Maarten F. Los; Peng Fei Cheng; Ege T. Kavalali; Lisa M. Monteggia
Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic NMDAR (N-methyl-D-aspartate receptor) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder, although the underlying mechanism is unclear. Depressed patients report the alleviation of major depressive disorder symptoms within two hours of a single, low-dose intravenous infusion of ketamine, with effects lasting up to two weeks, unlike traditional antidepressants (serotonin re-uptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current therapies for major depressive disorder and faster-acting antidepressants are needed, particularly for suicide-risk patients. The ability of ketamine to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. Here we show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models, and that these effects depend on the rapid synthesis of brain-derived neurotrophic factor. We find that the ketamine-mediated blockade of NMDAR at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII), resulting in reduced eEF2 phosphorylation and de-suppression of translation of brain-derived neurotrophic factor. Furthermore, we find that inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings indicate that the regulation of protein synthesis by spontaneous neurotransmission may serve as a viable therapeutic target for the development of fast-acting antidepressants.
The Journal of Neuroscience | 2013
Michael J. Morris; Melissa Mahgoub; Elisa S. Na; Heena Pranav; Lisa M. Monteggia
Histone acetylation and deacetylation can be dynamically regulated in response to environmental stimuli and play important roles in learning and memory. Pharmacological inhibition of histone deacetylases (HDACs) improves performance in learning tasks; however, many of these classical agents are “pan-HDAC” inhibitors, and their use makes it difficult to determine the roles of specific HDACs in cognitive function. We took a genetic approach using mice lacking the class I HDACs, HDAC1 or HDAC2, in postmitotic forebrain neurons to investigate the specificity or functional redundancy of these HDACs in learning and synaptic plasticity. We show that selective knock-out of Hdac2 led to a robust acceleration of the extinction rate of conditioned fear responses and a conditioned taste aversion as well as enhanced performance in an attentional set-shifting task. Hdac2 knock-out had no impact on episodic memory or motor learning, suggesting that the effects are task-dependent, with the predominant impact of HDAC2 inhibition being an enhancement in an animals ability to rapidly adapt its behavioral strategy as a result of changes in associative contingencies. Our results demonstrate that the loss of HDAC2 improves associative learning, with no effect in nonassociative learning tasks, suggesting a specific role for HDAC2 in particular types of learning. HDAC2 may be an intriguing target for cognitive and psychiatric disorders that are characterized by an inability to inhibit behavioral responsiveness to maladaptive or no longer relevant associations.
Physiology & Behavior | 2008
Michael J. Morris; Elisa S. Na; Alan Kim Johnson
Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate--an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors.
Neuropsychopharmacology | 2013
Elisa S. Na; Erika D. Nelson; Ege T. Kavalali; Lisa M. Monteggia
Methyl-CpG-binding protein 2 (MeCP2) is a transcriptional regulator of gene expression that is an important epigenetic factor in the maintenance and development of the central nervous system. The neurodevelopmental disorders Rett syndrome and MECP2 duplication syndrome arise from loss-of-function and gain-of-function alterations in MeCP2 expression, respectively. Several animal models have been developed to recapitulate the symptoms of Rett syndrome and MECP2 duplication syndrome. Cell morphology, neurotransmission, and cellular processes that support learning and memory are compromised as a result of MeCP2 loss- or gain-of-function. Interestingly, loss-of-MeCP2 function and MeCP2 overexpression trigger diametrically opposite changes in synaptic transmission. These findings indicate that the precise regulation of MeCP2 expression is a key requirement for the maintenance of synaptic and neuronal homeostasis and underscore its importance in central nervous system function. This review highlights the functional role of MeCP2 in the brain as a regulator of synaptic and neuronal plasticity as well as its etiological role in the development of Rett syndrome and MECP2 duplication syndrome.
The Journal of Neuroscience | 2012
Elisa S. Na; Erika D. Nelson; Megumi Adachi; Anita E. Autry; Melissa Mahgoub; Ege T. Kavalali; Lisa M. Monteggia
Rett syndrome and MECP2 duplication syndrome are neurodevelopmental disorders that arise from loss-of-function and gain-of-function alterations in methyl-CpG binding protein 2 (MeCP2) expression, respectively. Although there have been studies examining MeCP2 loss of function in animal models, there is limited information on MeCP2 overexpression in animal models. Here, we characterize a mouse line with MeCP2 overexpression restricted to neurons (Tau–Mecp2). This MeCP2 overexpression line shows motor coordination deficits, heightened anxiety, and impairments in learning and memory that are accompanied by deficits in long-term potentiation and short-term synaptic plasticity. Whole-cell voltage-clamp recordings of cultured hippocampal neurons from Tau–Mecp2 mice reveal augmented frequency of miniature EPSCs with no change in miniature IPSCs, indicating that overexpression of MeCP2 selectively impacts excitatory synapse function. Moreover, we show that alterations in transcriptional repression mechanisms underlie the synaptic phenotypes in hippocampal neurons from the Tau–Mecp2 mice. These results demonstrate that the Tau–Mecp2 mouse line recapitulates many key phenotypes of MECP2 duplication syndrome and support the use of these mice to further study this devastating disorder.
Brain Research | 2007
Elisa S. Na; Michael J. Morris; Ralph F. Johnson; Terry G. Beltz; Alan Kim Johnson
Sodium appetite is associated with a form of behavioral plasticity in which animals experimentally depleted of sodium progressively increase their intake of hypertonic NaCl over several successive (on 2 to 4 occasions) depletion. The present experiment explored the nature of this plasticity by quantifying Fos immunoreactivity (Fos-ir) in structures implicated in the mediation of sodium appetite and in the signaling of reward. Rats were depleted of sodium with the diuretic furosemide three times (3F), one time (2V1F) or sham depleted (i.e., vehicle treated; 3V). Rats were given sodium appetite tests for the first two treatments. The sodium appetite test was omitted after the third treatment. Fos-ir activity was quantified in the paraventricular nucleus (PVN), subfornical organ (SFO), supraoptic nucleus (SON), nucleus accumbens (NAc) shell and core, basolateral (BLA) and central amygdala (CeA), and medial prefrontal cortex (mPFC). Animals receiving repeated sodium depletions increased sodium ingestion across initial depletions. Fos-ir activity was markedly enhanced in the SFO, BLA, and shell of the NAc of 3F rats relative to 2V1F and 3V animals. These results indicate that repeated experience with sodium depletion and ingestion affects both behavioral and neural responses to sodium. Experience with sodium depletion enhances its ingestion and may have a direct impact on central structures implicated in sodium appetite and reward signaling.
Hormones and Behavior | 2011
Elisa S. Na; Lisa M. Monteggia
Rett syndrome is a neurodevelopmental disorder that is a direct consequence of functional mutations in the methyl-CpG-binding protein-2 (MeCP2) gene, which has focused attention on epigenetic mechanisms in neurons. MeCP2 is widely believed to be a transcriptional repressor although it may have additional functions in the CNS. Genetic mouse models that compromise MeCP2 function demonstrate that homeostatic regulation of MeCP2 is necessary for normal CNS functioning. Recent work has also demonstrated that MeCP2 plays an important role in mediating synaptic transmission in the CNS in particular, spontaneous neurotransmission and short-term synaptic plasticity. This review will discuss the role of MeCP2 in CNS development and function, as well as a potential important role for MeCP2 and epigenetic processes involved in mediating transcriptional repression in Rett syndrome.
Neurobiology of Learning and Memory | 2014
Michael J. Morris; Megumi Adachi; Elisa S. Na; Lisa M. Monteggia
Methylation of cytosine nucleotides is governed by DNA methyltransferases (DNMTs) that establish de novo DNA methylation patterns in early embryonic development (e.g., DNMT3a and DNMT3b) or maintain those patterns on hemimethylated DNA in dividing cells (e.g., DNMT1). DNMTs continue to be expressed at high levels in mature neurons, however their impact on neuronal function and behavior are unclear. To address this issue we examined DNMT1 and DNMT3a expression following associative learning. We also generated forebrain specific conditional Dnmt1 or Dnmt3a knockout mice and characterized them in learning and memory paradigms as well as for alterations in long-term potentiation (LTP) and synaptic plasticity. Here, we report that experience in an associative learning task impacts expression of Dnmt3a, but not Dnmt1, in brain areas that mediate learning of this task. We also found that Dnmt3a knockout mice, and not Dnmt1 knockouts have synaptic alterations as well as learning deficits on several associative and episodic memory tasks. These findings indicate that the de novo DNA methylating enzyme DNMT3a in postmitotic neurons is necessary for normal memory formation and its function cannot be substituted by the maintenance DNA methylating enzyme DNMT1.
Behavioral Neuroscience | 2006
Michael J. Morris; Elisa S. Na; Angela J. Grippo; Alan Kim Johnson
The authors tested the hypothesis that chronic treatment with a dose of deoxycorticosterone acetate (DOCA) known to elicit a robust sodium appetite can negatively affect the hedonic state of rats. Daily treatment with DOCA with no opportunity to ingest saline produced a rightward shift in the midpoint (effective current 50) of lateral hypothalamic self-stimulation (LHSS) current-response functions and reduced intakes of a palatable sucrose solution. Providing rats with 0.3 M saline during DOCA treatment prevented the rightward shift in LHSS response functions and the decrease in sucrose intake. The authors concluded that a chronic sodium appetite, with no opportunity to attenuate the appetite, can elicit a reduced responsiveness to reward.
Brain Research | 2004
Angela J. Grippo; Elisa S. Na; Ralph F. Johnson; Terry G. Beltz; Alan Kim Johnson
Chronic mild stress (CMS), an animal model of depression associated with anhedonia, was used to examine nucleus accumbens (NAc) activation associated with a rewarding stimulus. Following 4 weeks of CMS in rats, NAc Fos-immunoreactivity was measured after ingestion of a fixed volume of sucrose. Fewer Fos-positive neurons were observed in the NAc in CMS versus control rats. These findings have implications for the mechanisms underlying reduced responding to pleasurable stimuli associated with depression.