Elisa Scalabrin
Ca' Foscari University of Venice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisa Scalabrin.
Atmospheric Chemistry and Physics | 2012
Elisa Scalabrin; Roberta Zangrando; Elena Barbaro; Natalie Kehrwald; Jacopo Gabrieli; Carlo Barbante; Andrea Gambaro
Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m −3 levels. Mean total FAA concentration was 1070 fmol m −3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60 % of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m −3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.
Analytical and Bioanalytical Chemistry | 2015
Elisa Scalabrin; Marta Radaelli; Giovanni Rizzato; Patrizia Bogani; Marcello Buiatti; Andrea Gambaro; Gabriele Capodaglio
AbstractNicotiana langsdorffii plants, wild and transgenic for the Agrobacterium rhizogenes rol C gene and the rat glucocorticoid receptor (GR) gene, were exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations). An untargeted metabolomic analysis was carried out in order to investigate the metabolic effects of the inserted genes in response to the applied stresses and to obtain a comprehensive profiling of metabolites induced during abiotic stresses. High-performance liquid chromatography separation (HPLC) coupled to high-resolution mass spectrometry (HRMS) enabled the identification of more than 200 metabolites, and statistical analysis highlighted the most relevant compounds for each plant treatment. The plants exposed to heat stress showed a unique set of induced secondary metabolites, some of which were known while others were not previously reported for this kind of stress; significant changes were observed especially in lipid composition. The role of trichome, as a protection against heat stress, is here suggested by the induction of both acylsugars and glykoalkaloids. Water deficit and Cr(VI) stresses resulted mainly in enhanced antioxidant (HCAs, polyamine) levels and in the damage of lipids, probably as a consequence of reactive oxygen species (ROS) production. Moreover, the ability of rol C expression to prevent oxidative burst was confirmed. The results highlighted a clear influence of GR modification on plant stress response, especially to water deficiency—a phenomenon whose applications should be further investigated. This study provides new insights into the field of system biology and demonstrates the importance of metabolomics in the study of plant functioning. Graphical AbstractUntargeted metabolomic analysis was applied to wild type, GR and RolC modified Nicotiana Langsdorffii plants exposed to heat, water and Cr(VI) stresses. The key metabolites, highly affected by stress application, were identified, allowing to outline the main metabolic responses to stress in each plant genotype.
Food Chemistry | 2017
Giovanni Rizzato; Elisa Scalabrin; Marta Radaelli; Gabriele Capodaglio; Oreste Piccolo
The roots and rhizomes of licorice plants (genus Glycyrrhiza L.) are commercially employed, after processing, in confectionery production or as sweetening and flavouring agents in the food, tobacco and beer industries. G. glabra, G. inflata and G. uralensis are the most significant licorice species, often indistinctly used for different productions. Licorice properties are directly related to its chemical composition, which determines the commercial values and the quality of the derived products. In order to better understand the characteristics and properties of each species, a chemical characterization of three species of licorice (G. glabra, G. inflata, G. uralensis) is proposed, through an untargeted metabolomic approach and using high-resolution mass spectrometry. The statistical analysis reveals new possible markers for the analyzed species, and provides a reliable identification of a high number of metabolites, contributing to the characterization of Glycyrrhiza metabolome.
Science of The Total Environment | 2016
Roberta Zangrando; Elena Barbaro; Torben Kirchgeorg; Marco Vecchiato; Elisa Scalabrin; Marta Radaelli; Dragana Đorđević; Carlo Barbante; Andrea Gambaro
Biomass burning and primary biological aerosol particles (PBAPs) represent important primary sources of organic compounds in the atmosphere. These particles and compounds are able to affect climate and human health. In the present work, using HPLC-orbitrapMS, we determined the atmospheric concentrations of molecular markers such as anhydrosugars and phenolic compounds that are specific for biomass burning, as well as the concentrations of sugars, alcohol sugars and d- and l-amino acids (D-AAs and L-AAs) for studying PBAPs in Belgrade (Serbia) aerosols collected in September-December 2008. In these samples, high levels of all these biomarkers were observed in October. Relative percentages of vanillic (V), syringic compounds (S) and p-coumaric acid (PA), as well as levoglucosan/mannosan (L/M) ratios, helped us discriminate between open fire events and wood combustion for domestic heating during the winter. L-AAs and D-AAs (1% of the total) were observed in Belgrade aerosols mainly in September-October. During open fire events, mean D-AA/L-AA (D/L) ratio values of aspartic acid, threonine, phenylalanine, alanine were significantly higher than mean D/L values of samples unaffected by open fire. High levels of AAs were observed for open biomass burning events. Thanks to four different statistical approaches, we demonstrated that Belgrade aerosols are affected by five sources: a natural source, a source related to fungi spores and degraded material and three other sources linked to biomass burning: biomass combustion in open fields, the combustion of grass and agricultural waste and the combustion of biomass in stoves and industrial plants. The approach employed in this work, involving the determination of specific organic tracers and statistical analysis, proved useful to discriminate among different types of biomass burning events.
Rendiconti Lincei-scienze Fisiche E Naturali | 2016
Clara Turetta; Roberta Zangrando; Elena Barbaro; Jacopo Gabrieli; Elisa Scalabrin; Piero Zennaro; Andrea Gambaro; Giuseppa Toscano; Carlo Barbante
We investigated the elemental composition and water-soluble-organic compounds (WSOC) present in size-segregated airborne particulate matter to better understand: (1) the distribution of the water-soluble fraction of trace elements (TE), rare earth elements (REE) and WSOCs among different particulate sizes, and (2) the transport processes of aerosol towards the Arctic zone. Samples were collected at Ny-Alesund in the Svalbard Islands (78°55′07″N, 11°53′30″E) from 19 April to 14 September 2010. Water-soluble TE and REE were measured with the aim of recognising reliable tracers of specific sources, which may prove crucial in cost-effective strategies of air pollution control. The TE and REE content, especially in the finest fractions of aerosols in remote areas, is primarily due to long-range transport. It gives valuable information on the global circulation and on the contribution of human activities to aerosol composition (Birmili et al. in Environ Sci Technol 40:1144–1153, 2006; Fernández-Espinosa et al. in Atmos Environ 38:873–886, 2004; Song et al. in Atmos Environ 35:5277–5286, 2001). On the same samples, we also determined water-soluble organic tracers as specific source indicators: levoglucosan and methoxyphenols from biomass burning, acrylamide from anthropogenic origin and amino acids from primary production. These results were discussed in previous papers (Scalabrin et al. in Atmos Chem Phys 12:10453–10463, 2012; Zangrando et al. in Environ Sci Technol 47:8565–8574, 2013).
International Journal of Environmental Analytical Chemistry | 2015
Martina Ranaldo; Giuseppa Toscano; Marta Radaelli; Elisa Scalabrin; Gabriele Capodaglio
The concentrations of 19 elements in wild and genetically modified Nicotiana langsdorffii (N. langsdorffii) exposed to Chromium (VI) and to water deficit were determined and compared to provide new information about their response to abiotic stress. Genetic modifications by GR and RolC genes (encoding for the rat glucocorticoid receptor and for Agrobacterium rhizogenes RolC, respectively) were investigated because they induce significant, but only partially known changes in the plant response to stress. Simultaneous determination of Al, As, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Na, Pb, Rb, Sr, V and Zn was carried out by ICP-MS equipped with a collision/reaction cell (ICP-ORS-MS). The methodology was optimised by testing the grinding, homogenisation, digestion and analysis procedures, to reduce the uncertainty of the experimental results and to identify statistically significant differences between nine sample pools, for a total of 75 samples. The quality control procedure was carried out by blank control and by evaluating the detection limits and repeatability. Trueness was assessed by analysing certified reference material, NIST 1573a. Significant differences were observed in the uptake and accumulation of several elements in the wild-type N. langsdorffii samples, either with respect to the plants submitted to water deficit and exposure to Cr(VI) or with respect to the genetically modified plants. The differences were highlighted by principal component analysis (PCA). The analysis of the element content of the whole plant, combined with the data found in the literature, allows us to hypothesise effects on the metabolic mechanism controlling the uptake and translocation of elements inside the vegetal organism. Because genetic and chemical stress decreases the nutrient concentration in the whole plant, we can say that the uptake at root level is affected. The increase in concentration of elements such as As, Sr and Al indicates a decreased selectivity in the uptake of potentially toxic elements and, consequently, highlights the effects on the plant’s metabolic processes.
Plant Physiology and Biochemistry | 2016
Elisa Scalabrin; Marta Radaelli; Gabriele Capodaglio
XXVI Congresso della Divisione di Chimica Analitica della Società Chimica Italiana | 2016
Marta Radaelli; Elisa Scalabrin; Giovanni Rizzato; Massimo Gardiman; Gabriele Capodaglio
XXVI Congresso della Divisione di Chimica Analitica della Società Chimica Italiana | 2016
Elisa Scalabrin; Marta Radaelli; Giovanni Rizzato; Gabriele Capodaglio
XV Italian-Hungarian Symposium on Spectrochemistry Pharmacological Research and Analytical Approaches | 2016
Giovanni Rizzato; Elisa Scalabrin; Marta Radaelli; Daniela Cirasola; Oreste Piccolo; Gabriele Capodaglio