Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Scariati is active.

Publication


Featured researches published by Elisa Scariati.


Frontiers in Human Neuroscience | 2013

Decreased frontal gyrification correlates with altered connectivity in children with autism

Marie Schaer; Marie-Christine Ottet; Elisa Scariati; Daniel Dukes; Martina Franchini; Stephan Eliez; Bronwyn Glaser

The structural correlates of functional dysconnectivity in autism spectrum disorders (ASD) have been seldom explored, despite the fact that altered functional connectivity is one of the most frequent neuropathological observations in the disorder. We analyzed cerebral morphometry and structural connectivity using multi-modal imaging for 11 children/adolescents with ASD and 11 matched controls. We estimated regional cortical and white matter volumes, as well as vertex-wise measures of cortical thickness and local Gyrification Index (lGI). Diffusion Tensor Images (DTI) were used to measure Fractional Anisotropy (FA) and tractography estimates of short- and long-range connectivity. We observed four clusters of lGI reduction in patients with ASD, three were located in the right inferior frontal region extending to the inferior parietal lobe, and one was in the right medial parieto-occipital region. Reduced volume was found in the anterior corpus callosum, along with fewer inter-hemispheric frontal streamlines. Despite the spatial correspondence of decreased gyrification and reduced long connectivity, we did not observe any significant relationship between the two. However, a positive correlation between lGI and local connectivity was present in all four clusters in patients with ASD. Reduced gyrification in the inferior fronto-parietal and posterior medial cortical regions lends support for early-disrupted cortical growth in both the mirror neuron system and midline structures responsible for social cognition. Early impaired neurodevelopment in these regions may represent an initial substrate for altered maturation in the cerebral networks that support complex social skills. We also demonstrate that gyrification changes are related to connectivity. This supports the idea that an imbalance between short- and long-range white matter tracts not only impairs the integration of information from multiple neural systems, but also alters the shape of the brain early on in autism.


Journal of Neural Transmission | 2016

Long-range dysconnectivity in frontal and midline structures is associated to psychosis in 22q11.2 deletion syndrome.

Elisa Scariati; Maria Carmela Padula; Marie Schaer; Stephan Eliez

Patients affected by 22q11.2 deletion syndrome (22q11DS) present a characteristic cognitive and psychiatric profile and have a genetic predisposition to develop schizophrenia. Although brain morphological alterations have been shown in the syndrome, they do not entirely account for the complex clinical picture of the patients with 22q11DS and for their high risk of psychotic symptoms. Since Friston proposed the “disconnection hypothesis” in 1998, schizophrenia is commonly considered as a disorder of brain connectivity. In this study, we review existing evidence pointing to altered brain structural and functional connectivity in 22q11DS, with a specific focus on the role of dysconnectivity in the emergence of psychotic symptoms. We show that widespread alterations of structural and functional connectivity have been described in association with 22q11DS. Moreover, alterations involving long-range association tracts as well as midline structures, such as the corpus callosum and the cingulate gyrus, have been associated with psychotic symptoms in this population. These results suggest common mechanisms for schizophrenia in syndromic and non-syndromic populations. Future directions for investigations are also discussed.


Brain Topography | 2014

Identifying 22q11.2 Deletion Syndrome and Psychosis Using Resting-State Connectivity Patterns

Elisa Scariati; Marie Schaer; Jonas Richiardi; Maude Schneider; Martin Debbané; Dimitri Van De Ville; Stephan Eliez

The clinical picture associated with 22q11.2 deletion syndrome (22q11DS) includes mild mental retardation and an increased risk of schizophrenia. While the clinical phenotype has been related to structural brain network alterations, there is only scarce information about functional connectivity in 22q11DS. However, such studies could lead to a better comprehension of the disease and reveal potential biomarkers for psychosis. A connectivity decoding approach was used to discriminate between 42 patients with 22q11DS and 41 controls using resting-state connectivity. The same method was then applied within the 22q11DS group to identify brain connectivity patterns specifically related to the presence of psychotic symptoms. An accuracy of 84xa0% was achieved in differentiating patients with 22q11DS from controls. The discriminative connections were widespread, but predominantly located in the bilateral frontal and right temporal lobes, and were significantly correlated to IQ. An 88xa0% accuracy was obtained for identification of existing psychotic symptoms within the patients group. The regions containing most discriminative connections included the anterior cingulate cortex (ACC), the left superior temporal and the right inferior frontal gyri. Functional connectivity alterations in 22q11DS affect mostly frontal and right temporal lobes and are related to the syndrome’s mild mental retardation. These results also provide evidence that resting-state connectivity can potentially become a biomarker for psychosis and that ACC plays an important role in the development of psychotic symptoms.


Journal of Neurodevelopmental Disorders | 2015

Structural and functional connectivity in the default mode network in 22q11.2 deletion syndrome

Maria Carmela Padula; Marie Schaer; Elisa Scariati; Maude Schneider; Dimitri Van De Ville; Martin Debbané; Stephan Eliez

BackgroundThe neural endophenotype associated with 22q11.2 deletion syndrome (22q11DS) includes deviant cortical development and alterations in brain connectivity. Resting-state functional magnetic resonance imaging (fMRI) findings also reported disconnectivity within the default mode network (DMN). In this study, we explored the relationship between functional and structural DMN connectivity and their changes with age in patients with 22q11DS in comparison to control participants. Given previous evidence of an association between DMN disconnectivity and the manifestation of psychotic symptoms, we further investigated this relationship in our group of patients with 22q11DS.MethodsT1-weighted, diffusion, and resting-state fMRI scans were acquired from 41 patients with 22q11DS and 43 control participants aged 6 to 28xa0years. A data-driven approach based on independent component analysis (ICA) was used to identify the DMN and to define regions of interest for the structural and functional connectivity analysis. Prodromal psychotic symptoms were assessed in adolescents and adults using the positive symptom scores of the Structured Interview of Prodromal Syndromes (SIPS). Connectivity measures were compared between groups and correlated with age. Repeating the between-group analysis in three different age bins further assessed the presence of age-related alterations in DMN connectivity. Structural and functional connectivity measures were then correlated with the SIPS scores.ResultsA simultaneous reduction of functional and structural connectivity between core medial nodes of the DMN was observed. Furthermore, structural connectivity measures significantly increased with age in the control group but not in patients with 22q11DS, suggesting the presence of an age-related alteration of the DMN structural connections. No correlations were found between the DMN disconnectivity and expression of prodromal symptoms in 22q11DS.ConclusionsThese findings indicate the presence of functional and structural DMN disconnectivity in 22q11DS and that patients with 22q11DS fail to develop normal structural connections between medial DMN nodes. This suggests the presence of altered neurodevelopmental trajectories in 22q11DS.


Translational Psychiatry | 2017

Adolescence is the starting point of sex-dichotomous COMT genetic effects

Sara Sannino; Maria Carmela Padula; Francesca Managò; Marie Schaer; Maude Schneider; Marco Armando; Elisa Scariati; F. Sloan-Béna; Maddalena Mereu; Maria Pontillo; Stefano Vicari; Gabriella Contarini; C Chiabrera; Marco Pagani; Alessandro Gozzi; Stephan Eliez; Francesco Papaleo

The catechol-o-methyltransferase (COMT) genetic variations produce pleiotropic behavioral/neuroanatomical effects. Some of these effects may vary among sexes. However, the developmental trajectories of COMT-by-sex interactions are unclear. Here we found that extreme COMT reduction, in both humans (22q11.2 deletion syndrome COMT Met) and mice (COMT−/−), was associated to cortical thinning only after puberty and only in females. Molecular biomarkers, such as tyrosine hydroxylase, Akt and neuronal/cellular counting, confirmed that COMT-by-sex divergent effects started to appear at the cortical level during puberty. These biochemical differences were absent in infancy. Finally, developmental cognitive assessment in 22q11DS and COMT knockout mice established that COMT-by-sex-dichotomous effects in executive functions were already apparent in adolescence. These findings uncover that genetic variations severely reducing COMT result in detrimental cortical and cognitive development selectively in females after their sexual maturity. This highlights the importance of taking into account the combined effect of genetics, sex and developmental stage.


NeuroImage: Clinical | 2016

An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

Alessandra Griffa; Elisa Scariati; Marie Schaer; Sébastien Urben; Stephan Eliez; Patric Hagmann

Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop.


NeuroImage: Clinical | 2017

Altered structural network architecture is predictive of the presence of psychotic symptoms in patients with 22q11.2 deletion syndrome

Maria Carmela Padula; Elisa Scariati; Marie Schaer; Corrado Sandini; Marie-Christine Ottet; Maude Schneider; Dimitri Van De Ville; Stephan Eliez

22q11.2 deletion syndrome (22q11DS) represents a homogeneous model of schizophrenia particularly suitable for the search of neural biomarkers of psychosis. Impairments in structural connectivity related to the presence of psychotic symptoms have been reported in patients with 22q11DS. However, the relationships between connectivity changes in patients with different symptomatic profiles are still largely unknown and warrant further investigations. In this study, we used structural connectivity to discriminate patients with 22q11DS with (N = 31) and without (N = 31) attenuated positive psychotic symptoms. Different structural connectivity measures were used, including the number of streamlines connecting pairs of brain regions, graph theoretical measures, and diffusion measures. We used univariate group comparisons as well as predictive multivariate approaches. The univariate comparison of connectivity measures between patients with or without attenuated positive psychotic symptoms did not give significant results. However, the multivariate prediction revealed that altered structural network architecture discriminates patient subtypes (accuracy = 67.7%). Among the regions contributing to the classification we found the anterior cingulate cortex, which is known to be associated to the presence of psychotic symptoms in patients with 22q11DS. Furthermore, a significant discrimination (accuracy = 64%) was obtained with fractional anisotropy and radial diffusivity in the left inferior longitudinal fasciculus and the right cingulate gyrus. Our results point to alterations in structural network architecture and white matter microstructure in patients with 22q11DS with attenuated positive symptoms, mainly involving connections of the limbic system. These alterations may therefore represent a potential biomarker for an increased risk of psychosis that should be further tested in longitudinal studies.


NeuroImage | 2017

Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome

Daniela Zöller; Marie Schaer; Elisa Scariati; Maria Carmela Padula; Stephan Eliez; Dimitri Van De Ville

ABSTRACT Although often ignored in fMRI studies, moment‐to‐moment variability of blood oxygenation level dependent (BOLD) signals reveals important information about brain function. Indeed, higher brain signal variability has been associated with better cognitive performance in young adults compared to children and elderly adults. Functional connectivity, a very common approach in resting‐state fMRI analysis, is scaled for variance. Thus, alterations might be confounded or driven by BOLD signal variance alterations. Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a neurodevelopmental disorder that is associated with a vast cognitive and clinical phenotype. To date, several resting‐state fMRI studies reported altered functional connectivity in 22q11.2DS, however BOLD signal variance has not yet been analyzed. Here, we employed PLS correlation analysis to reveal multivariate patterns of diagnosis‐related alterations and age‐relationship throughout the cortex of 50 patients between 9 and 25 years old and 50 healthy controls in the same age range. To address how functional connectivity in the default mode network is influenced by BOLD signal fluctuations, we conducted the same analysis on seed‐to‐voxel connectivity of the posterior cingulate cortex (PCC) and compared resulting brain patterns. BOLD signal variance was lower mainly in regions of the default mode network and in the dorsolateral prefrontal cortex, but higher in large parts of the temporal lobes. In those regions, BOLD signal variance was correlated with age in healthy controls, but not in patients, suggesting deviant developmental trajectories from child‐ to adulthood. Positive connectivity of the PCC within the default mode network as well as negative connectivity towards the frontoparietal network were weaker in patients with 22q11.2DS. We furthermore showed that lower functional connectivity of the PCC was not driven by higher BOLD signal variability. Our results confirm the strong implication of BOLD variance in aging and give an initial insight in its relationship with functional connectivity in the DMN. HighlightsBOLD signal variability is broadly altered in patients with 22q11.2DS.Positive and negative seed‐to‐brain DMN connectivity is globally reduced.Cross‐sectional trajectories are altered in BOLD variability but not DMN connectivity.DMN connectivity reductions are not driven by BOLD variability alterations.


Human Brain Mapping | 2017

Multimodal investigation of triple network connectivity in patients with 22q11DS and association with executive functions

Maria Carmela Padula; Marie Schaer; Elisa Scariati; Johanna Maeder; Maude Schneider; Stephan Eliez

Large‐scale brain networks play a prominent role in cognitive abilities and their activity is impaired in psychiatric disorders, such as schizophrenia. Patients with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing schizophrenia and present similar cognitive impairments, including executive functions deficits. Thus, 22q11DS represents a model for the study of neural biomarkers associated with schizophrenia. In this study, we investigated structural and functional connectivity within and between the Default Mode (DMN), the Central Executive (CEN), and the Saliency network (SN) in 22q11DS using resting‐state fMRI and DTI. Furthermore, we investigated if triple network impairments were related to executive dysfunctions or the presence of psychotic symptoms. Sixty‐three patients with 22q11DS and sixty‐eighty controls (age 6–33 years) were included in the study. Structural connectivity between main nodes of DMN, CEN, and SN was computed using probabilistic tractography. Functional connectivity was computed as the partial correlation between the time courses extracted from each node. Structural and functional connectivity measures were then correlated to executive functions and psychotic symptom scores. Our results showed mainly reduced structural connectivity within the CEN, DMN, and SN, in patients with 22q11DS compared with controls as well as reduced between‐network connectivity. Functional connectivity appeared to be more preserved, with impairments being evident only within the DMN. Structural connectivity impairments were also related to executive dysfunctions. These findings show an association between triple network structural alterations and executive deficits in patients with the microdeletion, suggesting that 22q11DS and schizophrenia share common psychopathological mechanisms. Hum Brain Mapp 38:2177–2189, 2017.


Journal of Neurodevelopmental Disorders | 2016

Visual memory profile in 22q11.2 microdeletion syndrome: are there differences in performance and neurobiological substrates between tasks linked to ventral and dorsal visual brain structures? A cross-sectional and longitudinal study

Mathilde Bostelmann; Maude Schneider; Maria Carmela Padula; Johanna Maeder; Marie Schaer; Elisa Scariati; Martin Debbané; Bronwyn Glaser; Sarah Menghetti; Stephan Eliez

BackgroundChildren affected by the 22q11.2 deletion syndrome (22q11.2DS) have a specific neuropsychological profile with strengths and weaknesses in several cognitive domains. Specifically, previous evidence has shown that patients with 22q11.2DS have more difficulties memorizing faces and visual-object characteristics of stimuli. In contrast, they have better performance in visuo-spatial memory tasks. The first focus of this study was to replicate these results in a larger sample of patients affected with 22q11.2DS and using a range of memory tasks. Moreover, we analyzed if the deficits were related to brain morphology in the structures typically underlying these abilities (ventral and dorsal visual streams). Finally, since the longitudinal development of visual memory is not clearly characterized in 22q11.2DS, we investigated its evolution from childhood to adolescence.MethodsSeventy-one patients with 22q11.2DS and 49 control individuals aged between 9 and 16xa0years completed the Benton Visual Retention Test (BVRT) and specific subtests assessing visual memory from the Children’s Memory Scale (CMS). The BVRT was used to compute spatial and object memory errors. For the CMS, specific subtests were classified into ventral, dorsal, and mixed subtests. Longitudinal data were obtained from a subset of 26 patients and 22 control individuals.ResultsCross-sectional results showed that patients with 22q11.2DS were impaired in all visual memory measures, with stronger deficits in visual-object memory and memory of faces, compared to visuo-spatial memory. No correlations between morphological brain impairments and visual memory were found in patients with 22q11.2DS. Longitudinal findings revealed that participants with 22q11.2DS made more object memory errors than spatial memory errors at baseline. This difference was no longer significant at follow-up.ConclusionsIndividuals with 22q11.2DS have impairments in visual memory abilities, with more pronounced difficulties in memorizing faces and visual-object characteristics. From childhood to adolescence, the visual cognitive profile of patients with 22q11.2DS seems globally stable even though some processes show an evolution with time. We hope that our results will help clinicians and caregivers to better understand the memory difficulties of young individuals with 22q11.2DS. This has a particular importance at school to facilitate recommendations concerning intervention strategies for these young patients.

Collaboration


Dive into the Elisa Scariati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitri Van De Ville

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Zöller

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge