Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisa Zoratti is active.

Publication


Featured researches published by Elisa Zoratti.


Haematologica | 2014

Resveratrol accelerates erythroid maturation by activation of FOXO3 and ameliorates anemia in beta-thalassemic mice

Sara Santos Franco; Luigia De Falco; Saghi Ghaffari; Carlo Brugnara; David A. Sinclair; Alessandro Matte; Achille Iolascon; Narla Mohandas; Mariarita Bertoldi; Xiuli An; Angela Siciliano; Pauline Rimmele; Maria Domenica Cappellini; Shaday Michan; Elisa Zoratti; Janin Anne; Lucia De Franceschi

Resveratrol, a polyphenolic-stilbene, has received increased attention in the last decade due to its wide range of biological activities. Beta(β)-thalassemias are inherited red cell disorders, found worldwide, characterized by ineffective erythropoiesis and red cell oxidative damage with reduced survival. We evaluated the effects of low-dose-resveratrol (5 μM) on in vitro human erythroid differentiation of CD34+ from normal and β-thalassemic subjects. We found that resveratrol induces accelerated erythroid-maturation, resulting in the reduction of colony-forming units of erythroid cells and increased intermediate and late erythroblasts. In sorted colony-forming units of erythroid cells resveratrol activates Forkhead-box-class-O3, decreases Akt activity and up-regulates anti-oxidant enzymes as catalase. In an in vivo murine model for β-thalassemia, resveratrol (2.4 mg/kg) reduces ineffective erythropoiesis, increases hemoglobin levels, reduces reticulocyte count and ameliorates red cell survival. In both wild-type and β-thalassemic mice, resveratrol up-regulates scavenging enzymes such as catalase and peroxiredoxin-2 through Forkhead-box-class-O3 activation. These data indicate that resveratrol inhibits Akt resulting in FoxO3 activation with upregulation of cytoprotective systems enabling the pathological erythroid precursors to resist the oxidative damage and continue to differentiate. Our data suggest that the dual effect of resveratrol on erythropoiesis through activation of FoxO3 transcriptional factor combined with the amelioration of oxidative stress in circulating red cells may be considered as a potential novel therapeutic strategy in treating β-thalassemia.


Biochimica et Biophysica Acta | 2013

Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity

Elisa Dalla Pozza; Carlotta Lerda; Chiara Costanzo; Massimo Donadelli; Ilaria Dando; Elisa Zoratti; Maria Teresa Scupoli; Stefania Beghelli; Aldo Scarpa; Elias Fattal; Silvia Arpicco; Marta Palmieri

Pancreatic adenocarcinoma is often diagnosed when metastatic events have occurred. The early spread of circulating cancer cells expressing the CD44 receptor may play a crucial role in this process. In this study, we have investigated the cellular delivery ability and both in vitro and in vivo anti-tumoral activity of liposomes conjugated with two different low molecular weight hyaluronic acids (HA 4.8kDa and HA 12kDa), the primary ligand of CD44, and containing a lipophilic gemcitabine (GEM) pro-drug. By confocal microscopy and flow cytometry analyses, we demonstrate that the cellular uptake into a highly CD44-expressing pancreatic adenocarcinoma cell line is higher with HA-conjugated (12kDa>4.8kDa) than non-conjugated liposomes. Consistently, in vitro cytotoxic assays display an increased sensitivity towards GEM containing HA-liposomes, compared to non-conjugated liposomes. Conversely, CD44 non-expressing normal cells show a similar uptake and in vitro cytotoxicity with both HA-conjugated and non-conjugated liposomes. Furthermore, we demonstrate that the HA-liposomes are taken up into the cells via lipid raft-mediated endocytosis. All the liposome formulations containing GEM show a higher antitumoral activity than free GEM in a mouse xenograft tumor model of human pancreatic adenocarcinoma. The 12kDa HA-liposomes have the strongest efficiency, while non-conjugated liposomes and the 4.8kDa HA-liposomes are similarly active. Taken together, our results provide a strong rationale for further development of HA-conjugated liposomes to treat pancreatic adenocarcinoma.


The International Journal of Biochemistry & Cell Biology | 2008

Protective effects of ST. John's wort extract and its component hyperforin against cytokine-induced cytotoxicity in a pancreatic beta cell line

Marta Menegazzi; Michela Novelli; Pascale Beffy; V. D’Aleo; Elisa Tedeschi; R Lupi; Elisa Zoratti; Piero Marchetti; Hisanori Suzuki; Pellegrino Masiello

In both type 1 and type 2 diabetes, increased production of cytokines on autoimmune or metabolic basis is supposed to trigger an inflammatory process leading to dysfunction and death of pancreatic beta-cells. Therefore, anti-inflammatory pharmacological approaches aimed at blocking cytokine signalling pathways and consequent cytotoxicity in beta-cells are highly advisable. Based on previous evidence of cytokine antagonistic effects in other cell types, we explored the protective action of Hypericum perforatum (St-Johns-wort) extract and its component hyperforin against cytokine-induced functional impairment and apoptosis in the INS-1E beta-cell line, searching for the underlying mechanisms. The results showed that either St-Johns-wort extract or hyperforin (at 1-3 microM) prevented cytokine-induced impairment in glucose-stimulated insulin secretion and protected cells against apoptosis in a dose-dependent fashion. Inducible-NO-synthase expression was also potently hindered by the vegetal compounds. Interestingly, cytokine-induced activations of the signal-transducer-and-activator-of-transcription-1 (STAT-1) and the nuclear-factor-kappaB (NF-kappaB) were both down-regulated by SJW extract or HPF (range 0.5-5 microM) when evaluated by electrophoretic-mobility-shift-assay. Other transcription factors (CBF-1, SP-1) were unaffected. Components of SJW extract other than HPF were much less effective in down-regulating cytokine signalling. Significantly, inhibition of cytokine-elicited STAT-1 and NF-kappaB activation was confirmed in isolated rat and human islets incubated in the presence of these vegetal compounds. In conclusion, St-Johns-wort extract and hyperforin are non-peptidyl compounds which, at low concentrations, target key mechanisms of cytokine-induced beta-cell injury, thereby improving beta-cell function and survival. Thus, they are potentially valuable for the prevention or limitation of beta-cell loss in diabetes.


PLOS ONE | 2015

NLRP3 Inflammasome Activation in Dialyzed Chronic Kidney Disease Patients

Simona Granata; Valentina Masola; Elisa Zoratti; Maria Teresa Scupoli; Anna Baruzzi; Michele Messa; Fabio Sallustio; Loreto Gesualdo; Antonio Lupo; Gianluigi Zaza

To assess whether NLR pyrin domain-containing protein 3 (NLRP3) inflammasome, a multiprotein complex that mediates the activation of caspase-1 (CASP-1) and pro-inflammatory cytokines IL-18 and IL-1β, could be involved in the chronic inflammatory state observed in chronic kidney disease patients undergoing hemodialysis treatment (CKD-HD), we employed several biomolecular techniques including RT-PCR, western blot, FACS analysis, confocal microscopy and microarray. Interestingly, peripheral blood mononuclear cells from 15 CKD-HD patients showed higher mRNA levels of NLRP3, CASP-1, ASC, IL-1β, IL-18 and P2X7receptor compared to 15 healthy subjects. Western blotting analysis confirmed the above results. In particular, active forms of CASP-1, IL1-β and IL-18 resulted significantly up-regulated in CKD-HD versus controls. Additionally, elevated mitochondrial ROS level, colocalization of NLRP3/ASC/mitochondria in peripheral blood mononuclear cells from CKD-HD patients and down-regulation of CASP-1, IL1-β and IL-18 protein levels in immune-cells of CKD-HD patients stimulated with LPS/ATP in presence of mitoTEMPO, inhibitor of mitochondrial ROS production, suggested a possible role of this organelle in the aforementioned CKD-associated inflammasome activation. Then, microarray analysis confirmed, in an independent microarray study cohort, that NLRP3 and CASP-1, along with other inflammasome-related genes, were up-regulated in 17 CKD-HD patients and they were able to clearly discriminate these patients from 5 healthy subjects. All together these data showed, for the first time, that NLRP3 inflammasome was activated in uremic patients undergoing dialysis treatment and they suggested that this unphysiological condition could be possibly induced by mitochondrial dysfunction.


Blood | 2017

Mature CD10+ and immature CD10- neutrophils present in G-CSF-treated donors display opposite effects on T cells

Olivia Marini; Sara Costa; Dalila Bevilacqua; Federica Calzetti; Nicola Tamassia; Cecilia Spina; Donata de Sabata; Elisa Tinazzi; Claudio Lunardi; Maria Teresa Scupoli; Chiara Cavallini; Elisa Zoratti; Ilaria Tinazzi; Antonio Marchetta; Aurora Vassanelli; Maurizio Cantini; Giorgio Gandini; Andrea Ruzzenente; Alfredo Guglielmi; Francesco Missale; William Vermi; Cristina Tecchio; Marco A. Cassatella; Patrizia Scapini

The identification of discrete neutrophil populations, as well as the characterization of their immunoregulatory properties, is an emerging topic under extensive investigation. In such regard, the presence of circulating CD66b+ neutrophil populations, exerting either immunosuppressive or proinflammatory functions, has been described in several acute and chronic inflammatory conditions. However, due to the lack of specific markers, the precise phenotype and maturation status of these neutrophil populations remain unclear. Herein, we report that CD10, also known as common acute lymphoblastic leukemia antigen, neutral endopeptidase, or enkephalinase, can be used as a marker that, within heterogeneous populations of circulating CD66b+ neutrophils present in inflammatory conditions, clearly distinguishes the mature from the immature ones. Accordingly, we observed that the previously described immunosuppressive neutrophil population that appears in the circulation of granulocyte colony-stimulating factor (G-CSF)-treated donors (GDs) consists of mature CD66b+CD10+ neutrophils displaying an activated phenotype. These neutrophils inhibit proliferation and interferon γ (IFNγ) production by T cells via a CD18-mediated contact-dependent arginase 1 release. By contrast, we found that immature CD66b+CD10- neutrophils, also present in GDs, display an immature morphology, promote T-cell survival, and enhance proliferation and IFNγ production by T cells. Altogether, our findings uncover that in GDs, circulating mature and immature neutrophils, distinguished by their differential CD10 expression, exert opposite immunoregulatory properties. Therefore, CD10 might be used as a phenotypic marker discriminating mature neutrophils from immature neutrophil populations present in patients with acute or chronic inflammatory conditions, as well as facilitating their isolation, to better define their specific immunoregulatory properties.


PLOS ONE | 2013

The TNF-Family Cytokine TL1A Inhibits Proliferation of Human Activated B Cells

Chiara Cavallini; Ornella Lovato; Anna Bertolaso; Luciano Pacelli; Elisa Zoratti; Elisabetta Zanolin; Mauro Krampera; Alberto Zamò; Cristina Tecchio; Marco A. Cassatella; Giovanni Pizzolo; Maria Teresa Scupoli

Death receptor (DR3) 3 is a member of the TNFR superfamily. Its ligand is TNF-like ligand 1A (TL1A), a member of the TNF superfamily. TL1A/DR3 interactions have been reported to modulate the functions of T cells, NK, and NKT cells and play a crucial role in driving inflammatory processes in several T-cell-dependent autoimmune diseases. However, TL1A expression and effects on B cells remain largely unknown. In this study, we described for the first time that B cells from human blood express significant amounts of DR3 in response to B cell receptor polyclonal stimulation. The relevance of these results has been confirmed by immunofluorescence analysis in tonsil and spleen tissue specimens, which showed the in situ expression of DR3 in antigen-stimulated B cells in vivo. Remarkably, we demonstrated that TL1A reduces B-cell proliferation induced by anti-IgM-antibodies and IL-2 but did not affect B-cell survival, suggesting that TL1A inhibits the signal(s) important for B-cell proliferation. These results revealed a novel function of TL1A in modulating B-cell proliferation in vitro and suggest that TL1A may contribute to homeostasis of effector B-cell functions in immune response and host defense, thus supporting the role of the TL1A/DR3 functional axis in modulating the adaptive immune response.


International Journal of Oncology | 2015

Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi‑directionally convert into cancer stem cells

Elisa Dalla Pozza; Ilaria Dando; Giulia Biondani; Jessica Brandi; Chiara Costanzo; Elisa Zoratti; Matteo Fassan; Federico Boschi; Davide Melisi; Daniela Cecconi; Maria Teresa Scupoli; Aldo Scarpa; Marta Palmieri

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed when metastatic events have occurred. Cancer stem cells (CSCs) play an important role in tumor initiation, metastasis, chemoresistance and relapse. A growing number of studies have suggested that CSCs exist in a dynamic equilibrium with more differentiated cancer cells via a bi‑directional regeneration that is dependent on the environmental stimuli. In this investigation, we obtain, by using a selective medium, PDAC CSCs from five out of nine PDAC cell lines, endowed with different tumorsphere‑forming ability. PDAC CSCs were generally more resistant to the action of five anticancer drugs than parental cell lines and were characterized by an increased expression of EpCAM and CD44v6, typical stem cell surface markers, and a decreased expression of E‑cadherin, the main marker of the epithelial state. PDAC CSCs were able to re‑differentiate into parental cells once cultured in parental growth condition, as demonstrated by re‑acquisition of the epithelial morphology, the decreased expression levels of EpCAM and CD44v6 and the increased sensitivity to anticancer drugs. Finally, PDAC CSCs injected into nude mice developed a larger subcutaneous tumor mass and showed a higher metastatic activity compared to parental cells. The present study demonstrates the ability to obtain CSCs from several PDAC cell lines and that these cells are differentially resistant to various anticancer agents. This variability renders them a model of great importance to deeply understand pancreatic adenocarcinoma biology, to discover new biomarkers and to screen new therapeutic compounds.


Scientific Reports | 2017

HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity

Michela Serena; Francesca Parolini; Priscilla Biswas; Francesca Sironi; Almudena Blanco Miranda; Elisa Zoratti; Maria Teresa Scupoli; Serena Ziglio; Agustín Valenzuela-Fernández; Davide Gibellini; Maria Grazia Romanelli; Antonio G. Siccardi; Mauro S. Malnati; Alberto Beretta; Donato Zipeto

HLA-C has been demonstrated to associate with HIV-1 envelope glycoprotein (Env). Virions lacking HLA-C have reduced infectivity and increased susceptibility to neutralizing antibodies. Like all others MHC-I molecules, HLA-C requires β2-microglobulin (β2m) for appropriate folding and expression on the cell membrane but this association is weaker, thus generating HLA-C free-chains on the cell surface. In this study, we deepen the understanding of HLA-C and Env association by showing that HIV-1 specifically increases the amount of HLA-C free chains, not bound to β2m, on the membrane of infected cells. The association between Env and HLA-C takes place at the cell membrane requiring β2m to occur. We report that the enhanced infectivity conferred to HIV-1 by HLA-C specifically involves HLA-C free chain molecules that have been correctly assembled with β2m. HIV-1 Env-pseudotyped viruses produced in the absence of β2m are less infectious than those produced in the presence of β2m. We hypothesize that the conformation and surface expression of HLA-C molecules could be a discriminant for the association with Env. Binding stability to β2m may confer to HLA-C the ability to preferentially act either as a conventional immune-competent molecule or as an accessory molecule involved in HIV-1 infectivity.


Cellular and Molecular Neurobiology | 2017

Transcriptomic Profiling Discloses Molecular and Cellular Events Related to Neuronal Differentiation in SH-SY5Y Neuroblastoma Cells

Francesco Pezzini; Laura Bettinetti; Francesca Di Leva; Marzia Bianchi; Elisa Zoratti; Rosalba Carrozzo; Filippo M. Santorelli; Massimo Delledonne; Maciej Lalowski; Alessandro Simonati

Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.


Oncotarget | 2016

slan/M-DC8 + cells constitute a distinct subset of dendritic cells in human tonsils

Alessandra Micheletti; Giulia Finotti; Federica Calzetti; Silvia Lonardi; Elisa Zoratti; Mattia Bugatti; Stefania Stefini; William Vermi; Marco A. Cassatella

Human blood dendritic cells (DCs) include three main distinct subsets, namely the CD1c+ and CD141+ myeloid DCs (mDCs) and the CD303+ plasmacytoid DCs (pDCs). More recently, a population of slan/M-DC8+ cells, also known as “slanDCs”, has been described in blood and detected even in inflamed secondary lymphoid organs and non-lymphoid tissues. Nevertheless, hallmarks of slan/M-DC8+ cells in tissues are poorly defined. Herein, we report a detailed characterization of the phenotype and function of slan/M-DC8+ cells present in human tonsils. We found that tonsil slan/M-DC8+ cells represent a unique DC cell population, distinct from their circulating counterpart and also from all other tonsil DC and monocyte/macrophage subsets. Phenotypically, slan/M-DC8+ cells in tonsils display a CD11c+HLA-DR+CD14+CD11bdim/negCD16dim/negCX3CR1dim/neg marker repertoire, while functionally they exhibit an efficient antigen presentation capacity and a constitutive secretion of TNFα. Notably, such DC phenotype and functions are substantially reproduced by culturing blood slan/M-DC8+ cells in tonsil-derived conditioned medium (TDCM), further supporting the hypothesis of a full DC-like differentiation program occurring within the tonsil microenvironment. Taken together, our data suggest that blood slan/M-DC8+ cells are immediate precursors of a previously unrecognizedcompetent DC subset in tonsils, and pave the way for further characterization of slan/M-DC8+ cells in other tissues.

Collaboration


Dive into the Elisa Zoratti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge