Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabet Carlsohn is active.

Publication


Featured researches published by Elisabet Carlsohn.


Nature Methods | 2009

Enrichment of glycopeptides for glycan structure and attachment site identification

Jonas Nilsson; Ulla Rüetschi; Adnan Halim; Camilla Hesse; Elisabet Carlsohn; Gunnar Brinkmalm; Göran Larson

We present a method to enrich for glycoproteins from proteomic samples. Sialylated glycoproteins were selectively periodate-oxidized, captured on hydrazide beads, trypsinized and released by acid hydrolysis of sialic acid glycosidic bonds. Mass spectrometric fragment analysis allowed identification of glycan structures, and additional fragmentation of deglycosylated ions yielded peptide sequence information, which allowed glycan attachment site and protein identification. We identified 36 N-linked and 44 O-linked glycosylation sites on glycoproteins from human cerebrospinal fluid.


Infection and Immunity | 2006

HpaA is essential for Helicobacter pylori colonization in mice.

Elisabet Carlsohn; Johanna Nyström; Carol L. Nilsson; Ann-Mari Svennerholm

ABSTRACT Infection with the human gastric pathogen Helicobacter pylori can give rise to chronic gastritis, peptic ulcer, and gastric cancer. All H. pylori strains express the surface-localized protein HpaA, a promising candidate for a vaccine against H. pylori infection. To study the physiological importance of HpaA, a mutation of the hpaA gene was introduced into a mouse-adapted H. pylori strain. To justify that the interruption of the hpaA gene did not cause any polar effects of downstream genes or was associated with a second site mutation, the protein expression patterns of the mutant and wild-type strains were characterized by two different proteomic approaches. Two-dimensional differential in-gel electrophoresis analysis of whole-cell extracts and subcellular fractionation combined with nano-liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry for outer membrane protein profiling revealed only minor differences in the protein profile between the mutant and the wild-type strains. Therefore, the mutant strain was tested for its colonizing ability in a well-established mouse model. While inoculation with the wild-type strain resulted in heavily H. pylori-infected mice, the HpaA mutant strain was not able to establish colonization. Thus, by combining proteomic analysis and in vivo studies, we conclude that HpaA is essential for the colonization of H. pylori in mice.


Journal of Proteomics | 2013

Developments in biobanking workflow standardization providing sample integrity and stability

Johan Malm; Thomas E. Fehniger; Pia Danmyr; Ákos Végvári; Charlotte Welinder; Henrik Lindberg; Roger Appelqvist; Karin Sjödin; Elisabet Wieslander; Thomas Laurell; Sophia Hober; Frode S. Berven; David Fenyö; Xiangdong Wang; Per E. Andrén; Goutham Edula; Elisabet Carlsohn; Manuel Fuentes; Carol L. Nilsson; Magnus Dahlbäck; Melinda Rezeli; David Erlinge; György Marko-Varga

UNLABELLED Recommendations and outlines for standardization in biobanking processes are presented by a research team with long-term experience in clinical studies. These processes have important bearing on the use of samples in developing assays. These measurements are useful to document states of health and disease that are beneficial for academic research, commercial healthcare, drug development industry and government regulating agencies. There is a need for increasing awareness within proteomic and genomic communities regarding the basic concepts of collecting, storing and utilizing clinical samples. Quality control and sample suitability for analysis need to be documented and validated to ensure data integrity and establish contexts for interpretation of results. Standardized methods in proteomics and genomics are required to be practiced throughout the community allowing datasets to be comparable and shared for analysis. For example, sample processing of thousands of clinical samples, performed in 384 high-density sample tube systems in a fully automated workflow, preserves sample content and is presented showing validation criteria. Large studies will be accompanied by biological and molecular information with corresponding clinical records from patients and healthy donors. These developments position biobanks of human patient samples as an increasingly recognized major asset in disease research, future drug development and within patient care. BIOLOGICAL SIGNIFICANCE The current manuscript is of major relevance to the proteomic and genomic fields, as it outlines the standardization aspects of biobanking and the requirements that are needed to run future clinical studies that will benefit the patients where OMICS science will play a major role. A global view of the field is given where best practice and conventional acceptances are presented along with ongoing large-scale biobanking projects. The authors represent broadly stakeholders that cover the academic, pharma, biotech and healthcare fields with extensive experience and deliveries. This contribution will be a milestone paper to the proteomic and genomic scientists to present data in the future that will have impact to the life science area. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics.


Respiratory Research | 2011

Network analysis of quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment

Serena O'Neil; Brigita Sitkauskiene; Agne Babusyte; Algirda Krisiukeniene; Kristina Stravinskaite-Bieksiene; Raimundas Sakalauskas; Carina Sihlbom; Linda Ekerljung; Elisabet Carlsohn; Jan Lötvall

BackgroundProteomic studies of respiratory disorders have the potential to identify protein biomarkers for diagnosis and disease monitoring. Utilisation of sensitive quantitative proteomic methods creates opportunities to determine individual patient proteomes. The aim of the current study was to determine if quantitative proteomics of bronchial biopsies from asthmatics can distinguish relevant biological functions and whether inhaled glucocorticoid treatment affects these functions.MethodsEndobronchial biopsies were taken from untreated asthmatic patients (n = 12) and healthy controls (n = 3). Asthmatic patients were randomised to double blind treatment with either placebo or budesonide (800 μg daily for 3 months) and new biopsies were obtained. Proteins extracted from the biopsies were digested and analysed using isobaric tags for relative and absolute quantitation combined with a nanoLC-LTQ Orbitrap mass spectrometer. Spectra obtained were used to identify and quantify proteins. Pathways analysis was performed using Ingenuity Pathway Analysis to identify significant biological pathways in asthma and determine how the expression of these pathways was changed by treatment.ResultsMore than 1800 proteins were identified and quantified in the bronchial biopsies of subjects. The pathway analysis revealed acute phase response signalling, cell-to-cell signalling and tissue development associations with proteins expressed in asthmatics compared to controls. The functions and pathways associated with placebo and budesonide treatment showed distinct differences, including the decreased association with acute phase proteins as a result of budesonide treatment compared to placebo.ConclusionsProteomic analysis of bronchial biopsy material can be used to identify and quantify proteins using highly sensitive technologies, without the need for pooling of samples from several patients. Distinct pathophysiological features of asthma can be identified using this approach and the expression of these features is changed by inhaled glucocorticoid treatment. Quantitative proteomics may be applied to identify mechanisms of disease that may assist in the accurate and timely diagnosis of asthma.Trial registrationClinicalTrials.gov registration NCT01378039


Open Biology | 2014

A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization

Jafar Mahdavi; Necmettin Pirinccioglu; Neil J. Oldfield; Elisabet Carlsohn; Jeroen Stoof; Akhmed Aslam; Tim Self; Shaun Cawthraw; Liljana Petrovska; Natalie Colborne; Carina Sihlbom; Thomas Borén; Karl G. Wooldridge; Dlawer A. A. Ala'Aldeen

Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis.


Journal of Proteome Research | 2012

Strain-Level Typing and Identification of Bacteria Using Mass Spectrometry-Based Proteomics

Roger Karlsson; Max Davidson; Liselott Svensson-Stadler; Anders Karlsson; Kenneth Olesen; Elisabet Carlsohn; Edward R. B. Moore

Because of the alarming expansion in the diversity and occurrence of bacteria displaying virulence and resistance to antimicrobial agents, it is increasingly important to be able to detect these microorganisms and to differentiate and identify closely related species, as well as different strains of a given species. In this study, a mass spectrometry proteomics approach is applied, exploiting lipid-based protein immobilization (LPI), wherein intact bacterial cells are bound, via membrane-gold interactions, within a FlowCell. The bound cells are subjected to enzymatic digestion for the generation of peptides, which are subsequently identified, using LC-MS. Following database matching, strain-specific peptides are used for subspecies-level discrimination. The method is shown to enable a reliable typing and identification of closely related strains of the same bacterial species, herein illustrated for Helicobacter pylori .


Clinical Biochemistry | 2012

Molecular microheterogeneity of prostate specific antigen in seminal fluid by mass spectrometry.

Ákos Végvári; Melinda Rezeli; Carina Sihlbom; Jari Häkkinen; Elisabet Carlsohn; Johan Malm; Hans Lilja; Thomas Laurell; György Marko-Varga

OBJECTIVES Prostate specific antigen (PSA) is a widely used and clinically valuable marker for prostate disease. In order to enable the development of new PSA assays and progress the understanding of the biology of PSA we have analyzed PSA in seminal plasma. DESIGN AND METHODS PSA in seminal plasma from men attending a fertility clinic and healthy controls was analyzed using SDS-PAGE, Western blotting and mass spectrometry. RESULTS Using mass spectrometry, different forms of PSA could be identified in 1-9 bands seen on SDS-PAGE analysis of the respective sample. However, a majority of these molecular forms of PSA were not observed on Western blots. Enzymatic activity of PSA isoforms was demonstrated by sequencing data in zymogram gels. Multivariate analysis of clinical data revealed well-separated patient groups. CONCLUSIONS We demonstrated that PSA in seminal plasma occurs in several isoforms, yet not all were detectable using an antibody based clinical routine method. The heterogeneity of PSA expression might be of clinical significance, by an improved patient phenotyping.


Journal of Proteome Research | 2013

Chromosome 19 Annotations with Disease Speciation: A First Report from the Global Research Consortium

Carol L. Nilsson; Frode S. Berven; Frode Selheim; Huiling Liu; Joseph R. Moskal; Roger A. Kroes; Erik P. Sulman; Charles A. Conrad; Frederick F. Lang; Per E. Andrén; Anna Nilsson; Elisabet Carlsohn; Hans Lilja; Johan Malm; David Fenyö; Devipriya Subramaniyam; Xiangdong Wang; Maria Gonzales-Gonzales; Noelia Dasilva; Paula Díez; Manuel Fuentes; Ákos Végvári; Karin Sjödin; Charlotte Welinder; Thomas Laurell; Thomas E. Fehniger; Henrik Lindberg; Melinda Rezeli; Goutham Edula; Sophia Hober

A first research development progress report of the Chromosome 19 Consortium with members from Sweden, Norway, Spain, United States, China and India, a part of the Chromosome-centric Human Proteome Project (C-HPP) global initiative, is presented ( http://www.c-hpp.org ). From the chromosome 19 peptide-targeted library constituting 6159 peptides, a pilot study was conducted using a subset with 125 isotope-labeled peptides. We applied an annotation strategy with triple quadrupole, ESI-Qtrap, and MALDI mass spectrometry platforms, comparing the quality of data within and in between these instrumental set-ups. LC-MS conditions were outlined by multiplex assay developments, followed by MRM assay developments. SRM was applied to biobank samples, quantifying kallikrein 3 (prostate specific antigen) in plasma from prostate cancer patients. The antibody production has been initiated for more than 1200 genes from the entire chromosome 19, and the progress developments are presented. We developed a dedicated transcript microarray to serve as the mRNA identifier by screening cancer cell lines. NAPPA protein arrays were built to align with the transcript data with the Chromosome 19 NAPPA chip, dedicated to 90 proteins, as the first development delivery. We have introduced an IT-infrastructure utilizing a LIMS system that serves as the key interface for the research teams to share and explore data generated within the project. The cross-site data repository will form the basis for sample processing, including biological samples as well as patient samples from national Biobanks.


Clinical Proteomics | 2013

Potential tumor biomarkers identified in ovarian cyst fluid by quantitative proteomic analysis, iTRAQ

Björg Kristjansdottir; Kristina Levan; Karolina Partheen; Elisabet Carlsohn; Karin Sundfeldt

BackgroundEpithelial-derived ovarian adenocarcinoma (EOC) is the most deadly gynecologic tumor, and the principle cause of the poor survival rate is diagnosis at a late stage. Screening and diagnostic biomarkers with acceptable specificity and sensitivity are lacking. Ovarian cyst fluid should harbor early ovarian cancer biomarkers because of its closeness to the tumor. We investigated ovarian cyst fluid as a source for discovering biomarkers for use in the diagnosis of EOC.ResultsUsing quantitative mass spectrometry, iTRAQ MS, we identified 837 proteins in cyst fluid from benign, EOC stage I, and EOC stage III. Only patients of serous histology were included in the study. Comparing the benign (n = 5) with the malignant (n = 10) group, 87 of the proteins were significantly (p < 0.05) differentially expressed. Two proteins, serum amyloid A-4 (SAA4) and astacin-like metalloendopeptidase (ASTL), were selected for verification of the iTRAQ method and external validation with immunoblot in a larger cohort with mixed histology, in plasma (n = 68), and cyst fluid (n = 68). The protein selections were based on either high significance and high fold change or abundant appearance and several peptide recognitions in the sample sets (p = 0.04, FC = 1.95) and (p < 0.001, FC = 8.48) for SAA4 and ASTL respectively. Both were found to be significantly expressed (p < 0.05), but the methods did not correlate concerning ASTL.ConclusionsFluid from ovarian cysts connected directly to the primary tumor harbor many possible new tumor-specific biomarkers. We have identified 87 differentially expressed proteins and validated two candidates to verify the iTRAQ method. However several of the proteins are of interest for validation in a larger setting.


Cancer and Metastasis Reviews | 2015

Association of chromosome 19 to lung cancer genotypes and phenotypes.

Xiangdong Wang; Yong Zhang; Carol L. Nilsson; Frode S. Berven; Per E. Andrén; Elisabet Carlsohn; Peter Horvatovich; Johan Malm; Manuel Fuentes; Ákos Végvári; Charlotte Welinder; Thomas E. Fehniger; Melinda Rezeli; Goutham Edula; Sophia Hober; Toshihide Nishimura; György Marko-Varga

The Chromosome 19 Consortium, a part of the Chromosome-Centric Human Proteome Project (C-HPP, http://www.C-HPP.org), is tasked with the understanding chromosome 19 functions at the gene and protein levels, as well as their roles in lung oncogenesis. Comparative genomic hybridization (CGH) studies revealed chromosome aberration in lung cancer subtypes, including ADC, SCC, LCC, and SCLC. The most common abnormality is 19p loss and 19q gain. Sixty-four aberrant genes identified in previous genomic studies and their encoded protein functions were further validated in the neXtProt database (http://www.nextprot.org/). Among those, the loss of tumor suppressor genes STK11, MUM1, KISS1R (19p13.3), and BRG1 (19p13.13) is associated with lung oncogenesis or remote metastasis. Gene aberrations include translocation t(15, 19) (q13, p13.1) fusion oncogene BRD4-NUT, DNA repair genes (ERCC1, ERCC2, XRCC1), TGFβ1 pathway activation genes (TGFB1, LTBP4), Dyrk1B, and potential oncogenesis protector genes such as NFkB pathway inhibition genes (NFKBIB, PPP1R13L) and EGLN2. In conclusion, neXtProt is an effective resource for the validation of gene aberrations identified in genomic studies. It promises to enhance our understanding of lung cancer oncogenesis.

Collaboration


Dive into the Elisabet Carlsohn's collaboration.

Top Co-Authors

Avatar

Carol L. Nilsson

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carina Sihlbom

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Lilja

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophia Hober

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge