Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabete C. Costa is active.

Publication


Featured researches published by Elisabete C. Costa.


Journal of Controlled Release | 2014

Poly(2-ethyl-2-oxazoline)-PLA-g-PEI amphiphilic triblock micelles for co-delivery of minicircle DNA and chemotherapeutics.

Vítor M. Gaspar; Cristine Gonçalves; Duarte de Melo-Diogo; Elisabete C. Costa; João A. Queiroz; Chantal Pichon; Fani Sousa; Ilídio J. Correia

The design of nanocarriers for the delivery of drugs and nucleic-acids remains a very challenging goal due to their physicochemical differences. In addition, the reported accelerated clearance and immune response of pegylated nanomedicines highlight the necessity to develop carriers using new materials. Herein, we describe the synthesis of amphiphilic triblock poly(2-ethyl-2-oxazoline)-PLA-g-PEI (PEOz-PLA-g-PEI) micelles for the delivery of minicircle DNA (mcDNA) vectors. In this copolymer the generally used PEG moieties are replaced by the biocompatible PEOz polymer backbone that assembles the hydrophilic shell. The obtained results show that amphiphilic micelles have low critical micellar concentration, are hemocompatible and exhibit stability upon incubation in serum. The uptake in MCF-7 cells was efficient and the nanocarriers achieved 2.7 fold higher expression than control particles. Moreover, mcDNA-loaded micelleplexes penetrated into 3D multicellular spheroids and promoted widespread gene expression. Additionally, to prove the concept of co-delivery, mcDNA and doxorubicin (Dox) were simultaneously encapsulated in PEOz-PLA-g-PEI carriers, with high efficiency. Dox-mcDNA micelleplexes exhibited extensive cellular uptake and demonstrated anti-tumoral activity. These findings led us to conclude that this system has a potential not only for the delivery of novel mcDNA vectors, but also for the co-delivery of drug-mcDNA combinations without PEG functionalization.


Biotechnology Advances | 2016

3D tumor spheroids: an overview on the tools and techniques used for their analysis

Elisabete C. Costa; André F. Moreira; Duarte de Melo-Diogo; Vítor M. Gaspar; Marco P. Carvalho; Ilídio J. Correia

In comparison with 2D cell culture models, 3D spheroids are able to accurately mimic some features of solid tumors, such as their spatial architecture, physiological responses, secretion of soluble mediators, gene expression patterns and drug resistance mechanisms. These unique characteristics highlight the potential of 3D cellular aggregates to be used as in vitro models for screening new anticancer therapeutics, both at a small and large scale. Nevertheless, few reports have focused on describing the tools and techniques currently available to extract significant biological data from these models. Such information will be fundamental to drug and therapeutic discovery process using 3D cell culture models. The present review provides an overview of the techniques that can be employed to characterize and evaluate the efficacy of anticancer therapeutics in 3D tumor spheroids.


Biotechnology and Bioengineering | 2014

Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models

Elisabete C. Costa; Vítor M. Gaspar; Paula Coutinho; Ilídio J. Correia

Three‐dimensional (3D) cell culture models of solid tumors are currently having a tremendous impact in the in vitro screening of candidate anti‐tumoral therapies. These 3D models provide more reliable results than those provided by standard 2D in vitro cell cultures. However, 3D manufacturing techniques need to be further optimized in order to increase the robustness of these models and provide data that can be properly correlated with the in vivo situation. Therefore, in the present study the parameters used for producing multicellular tumor spheroids (MCTS) by liquid overlay technique (LOT) were optimized in order to produce heterogeneous cellular agglomerates comprised of cancer cells and stromal cells, during long periods. Spheroids were produced under highly controlled conditions, namely: (i) agarose coatings; (ii) horizontal stirring, and (iii) a known initial cell number. The simultaneous optimization of these parameters promoted the assembly of 3D characteristic cellular organization similar to that found in the in vivo solid tumors. Such improvements in the LOT technique promoted the assembly of highly reproducible, individual 3D spheroids, with a low cost of production and that can be used for future in vitro drug screening assays. Biotechnol. Bioeng. 2014;111: 1672–1685.


Journal of Controlled Release | 2015

Bioreducible poly(2-ethyl-2-oxazoline)-PLA-PEI-SS triblock copolymer micelles for co-delivery of DNA minicircles and Doxorubicin.

Vítor M. Gaspar; Patrick Baril; Elisabete C. Costa; Duarte de Melo-Diogo; Frédéric Foucher; João A. Queiroz; Fani Sousa; Chantal Pichon; Ilídio J. Correia

The co-delivery of minicircle DNA (mcDNA) and small anti-cancer drugs via stimuli-sensitive nanocarriers is a promising approach for combinatorial cancer therapy. However, the simultaneous loading of drugs and DNA in nanosized delivery systems is remarkably challenging. In this study we describe the synthesis of triblock copolymer micelles based on poly(2-ethyl-2-oxazoline)-poly(L-lactide) grafted with bioreducible polyethylenimine (PEOz-PLA-g-PEI-SS) for co-delivery of supercoiled (sc) mcDNA vectors and Doxorubicin (Dox). These amphiphilic carriers take advantage of non-fouling oxazolines to confer biological stability, of PLA to provide a hydrophobic core for drug encapsulation and of bioreducible PEI-SS to provide mcDNA complexation and an on-demand stimuli-responsive release. The obtained results show that mcDNA-loaded micelleplexes penetrate into in vitro tumor spheroid models with specific kinetics and exhibit a higher gene expression when compared to non-bioreducible nanocarriers. Moreover, in vivo bioluminescence imaging showed that gene expression is detected up to 8days following mcDNA-micelles intratumoral administration. Furthermore, drug-gene co-delivery in PEOz-PLA-g-PEI-SS carriers was verified by successful encapsulation of both Dox and mcDNA with high efficacy. Moreover, dual-loaded micelleplexes presented significant uptake and a cytotoxic effect in 2D cultures of cancer cells. The co-delivery of mcDNA-Dox to B16F10-Luciferase tumor bearing mice resulted in a reduction in tumor volume and cancer cells viability. Overall, such findings indicate that bioreducible triblock micelles are efficient for focal delivery in vivo and have potential for future application in combinatorial DNA-drug therapy.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

Combinatorial delivery of Crizotinib–Palbociclib–Sildenafil using TPGS-PLA micelles for improved cancer treatment

Duarte de Melo-Diogo; Vítor M. Gaspar; Elisabete C. Costa; André F. Moreira; David Oppolzer; Eugenia Gallardo; Ilídio J. Correia

The co-delivery of multiple chemotherapeutics by micellar delivery systems is a valuable approach to improve cancer treatment since various disease hallmarks can be targeted simultaneously. However, the delivery of multiple drugs requires a nanocarrier structure that can encapsulate various bioactive molecules. In this study, we evaluate the simultaneous encapsulation of a novel triple drug combination in D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) (TPGS-PLA) amphiphilic micelles for cancer therapy. The drug mixture involves two anti-tumoral drugs, Crizotinib and Palbociclib combined with Sildenafil, a compound that is capable of increasing drug accumulation in the intracellular compartment. Such combination aims to achieve an enhanced cytotoxic effect in cancer cells. Our results demonstrated that TPGS-PLA copolymers self-assembled into stable nanosized micelles (158.3nm) capable of co-encapsulating the three drugs with high loading efficiency. Triple drug loaded TPGS-PLA micelles were internalized in A549 non-small lung cancer cells and exhibited an improved cytotoxic effect in comparison with single (Crizotinib) or dual (Crizotinib-Palbociclib) drug loaded micelles, indicating the therapeutic potential of the triple co-delivery strategy. These findings demonstrate that TPGS-PLA micelles are suitable carriers for multiple drug delivery and also that this particular drug combination may have potential to improve cancer treatment.


Expert Opinion on Biological Therapy | 2015

Minicircle DNA vectors for gene therapy: advances and applications

Gaspar; de Melo-Diogo D; Elisabete C. Costa; André F. Moreira; João A. Queiroz; Chantal Pichon; Ilídio J. Correia; Fani Sousa

Introduction: Nucleic-acid-based biopharmaceuticals enclose a remarkable potential for treating debilitating or life-threatening diseases that currently remain incurable. This promising area of research envisages the creation of state-of-the-art DNA vaccines, pluripotent cells or gene-based therapies, which can be used to overcome current issues. To achieve this goal, DNA minicircles are emerging as ideal nonviral vectors due to their safety and persistent transgene expression in either quiescent or actively dividing cells. Areas covered: This review focuses on the characteristics of minicircle DNA (mcDNA) technology and the current advances in their production. The possible modifications to further improve minicircle efficacy are also emphasized and discussed in light of recent advances. As a final point, the main therapeutic applications of mcDNA are summarized, with a special focus on pluripotent stem cells production and cancer therapy. Expert opinion: Achieving in-target and persistent transgene expression is a challenging issue that is of critical importance for a successful therapeutic outcome. The use of miniaturized mcDNA cassettes with additional modifications that increase and prolong expression may contribute to an improved generation of biopharmaceuticals. The unique features of mcDNA render it an attractive alternative to overcome current technical issues and to bridge the significant gap that exists between basic research and clinical applications.


Colloids and Surfaces B: Biointerfaces | 2015

Gas-generating TPGS-PLGA microspheres loaded with nanoparticles (NIMPS) for co-delivery of minicircle DNA and anti-tumoral drugs

Vítor M. Gaspar; André F. Moreira; Elisabete C. Costa; João A. Queiroz; Fani Sousa; Chantal Pichon; Ilídio J. Correia

Drug-DNA combination therapies are receiving an ever growing focus due to their potential for improving cancer treatment. However, such approaches are still limited by the lack of multipurpose delivery systems that encapsulate drugs and condense DNA simultaneously. In this study, we describe the successful formulation of gas-generating pH-responsive D-α-tocopherol PEG succinate-poly(D,L-lactic-co-glycolic acid) (TPGS-PLGA) hollow microspheres loaded with both Doxorubicin (Dox) and minicircle DNA (mcDNA) nanoparticles as a strategy to co-deliver these therapeutics. For this study mcDNA vectors were chosen due to their increased therapeutic efficiency in comparison to standard plasmid DNA. The results demonstrate that TPGS-PLGA microcarriers can encapsulate Dox and chitosan nanoparticles completely condense mcDNA. The loading of mcDNA-nanoparticles into microspheres was confirmed by 3D confocal microscopy and co-localization analysis. The resulting TPGS-PLGA-Dox-mcDNA nanoparticle-in-microsphere hybrid carriers exhibit a well-defined spherical shape and neutral surface charge. Microcarriers incubation in acidic pH produced a gas-mediated Dox release, corroborating the microcarriers stimuli-responsive character. Also, the dual-loaded TPGS-PLGA particles achieved 5.2-fold higher cellular internalization in comparison with non-pegylated microspheres. This increased intracellular concentration resulted in a higher cytotoxic effect. Successful transgene expression was obtained after nanoparticle-mcDNA co-delivery in the microspheres. Overall these findings support the concept of using nanoparticle-microsphere multipart systems to achieve efficient co-delivery of various drug-mcDNA combinations.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery

André F. Moreira; Vítor M. Gaspar; Elisabete C. Costa; Duarte de Melo-Diogo; Paulo Machado; Catarina M. Paquete; Ilídio J. Correia

Nanocarriers with a pH responsive behavior are receiving an ever growing attention due to their potential for promoting on-demand drug release and thus increase the therapeutic effectiveness of anti-tumoral pharmaceutics. However, the majority of these systems require costly, time-consuming and complex chemical modifications of materials or drugs to synthesize nanoparticles with pH triggered release. Herein, the development of dual drug loaded pH-responsive mesoporous silica nanoparticles (MSNs) with a calcium carbonate-based coating is presented as an effective alternative. This innovative approach allowed the loading of a non-steroidal anti-inflammatory drug (Ibuprofen) and Doxorubicin, with high efficiency. The resulting dual drug loaded MSNs have spherical morphology and a mean size of 171nm. Our results indicate that under acidic conditions the coating disassembles and the drugs are rapidly released, whereas at physiologic pH the release is slower and gradually increases with time. Furthermore, an improved cytotoxic effect was obtained for Doxorubicin-Ibuprofen MSNs coated with CaCO3 in comparison with non-coated particles. The cytotoxic effect of dual loaded carbonate coated particles, was similar to that of Doxorubicin+Ibuprofen free drug administration at 72h, even with the delivery of a significantly lower amount of drug by MSNs-CaCO3. These results suggest that the carbonate coating of MSNs is a promising approach to create a pH-sensitive template for a delivery system with application in cancer therapy.


PLOS ONE | 2013

Evaluation of Nanoparticle Uptake in Co-culture Cancer Models

Elisabete C. Costa; Vítor M. Gaspar; João Filipe Gonçalves Marques; Paula Coutinho; Ilídio J. Correia

Co-culture models are currently bridging the gap between classical cultures and in vivo animal models. Exploring this novel approach unlocks the possibility to mimic the tumor microenvironment in vitro, through the establishment of cancer-stroma synergistic interactions. Notably, these organotypic models offer a perfect platform for the development and pre-clinical evaluation of candidate nanocarriers loaded with anti-tumoral drugs in a high throughput screening mode, with lower costs and absence of ethical issues. However, this evaluation was until now limited to co-culture systems established with precise cell ratios, not addressing the natural cell heterogeneity commonly found in different tumors. Therefore, herein the multifunctional nanocarriers efficiency was characterized in various fibroblast-MCF-7 co-culture systems containing different cell ratios, in order to unravel key design parameters that influence nanocarrier performance and the therapeutic outcome. The successful establishment of the co-culture models was confirmed by the tissue-like distribution of the different cells in culture. Nanoparticles incubation in the various co-culture systems reveals that these nanocarriers possess targeting specificity for cancer cells, indicating their suitability for being used in this illness therapy. Additionally, by using different co-culture ratios, different nanoparticle uptake profiles were obtained. These findings are of crucial importance for the future design and optimization of new drug delivery systems, since their real targeting capacity must be addressed in heterogenous cell populations, such as those found in tumors.


Colloids and Surfaces B: Biointerfaces | 2014

Synthesis and characterization of micelles as carriers of non-steroidal anti-inflammatory drugs (NSAID) for application in breast cancer therapy

João Filipe Gonçalves Marques; Vítor M. Gaspar; Elisabete C. Costa; Catarina Morais Vaz Paquete; Ilídio J. Correia

Non-steroidal anti-inflammatory drugs (NSAIDS) are emerging as a particularly valuable class of drugs due to their recently reported anti-tumoral activity in colorectal cancer. However, despite this tremendous potential, their bioavailability at the tumor microenvironment remains rather limited. To overcome this issue, in this work we synthesized biocompatible micellar nanocarriers composed of amphiphilic chitosan to deliver ibuprofen into breast cancer cells and evaluate its anti-tumor activity, while avoiding side-effects. Our results reveal that the formulations produced herein self-assembly into spherical micelles with suitable sizes for tumor accumulation (108-252 nm). Furthermore, by using a vortex-sonication method, ibuprofen was successfully encapsulated with high efficiency. Cell uptake studies show that ibuprofen-loaded micelles are readily internalized by tumor cells and deliver their cargo in the intracellular compartment as demonstrated by confocal microscopy images. This fact led to a remarkable reduction in cancer cell viability (<13%), at a relatively low drug dosage, illustrating the anti-tumoral activity of ibuprofen when delivered to breast cancer cells. These findings demonstrate the promising potential of chitosan micelles as carriers of cost-effective NSAIDS for application in breast cancer therapy.

Collaboration


Dive into the Elisabete C. Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duarte de Melo-Diogo

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

André F. Moreira

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

Vítor M. Gaspar

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

Fani Sousa

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

João A. Queiroz

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo O. Louro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catarina A. Reis

Universidade Nova de Lisboa

View shared research outputs
Researchain Logo
Decentralizing Knowledge