Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth A. Minthorn is active.

Publication


Featured researches published by Elisabeth A. Minthorn.


Journal of Medicinal Chemistry | 2012

Discovery of 7-Methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a Potent and Selective First-in-Class Inhibitor of Protein Kinase R (PKR)-like Endoplasmic Reticulum Kinase (PERK).

Jeffrey Michael Axten; Medina; Yanhong Feng; Arthur Shu; Stuart P. Romeril; Seth W. Grant; William H. Li; Dirk A. Heerding; Elisabeth A. Minthorn; Mencken T; Atkins C; Qi Liu; Rabindran S; Rakesh Kumar; Hong X; Goetz A; Stanley T; Taylor Jd; Sigethy Sd; Tomberlin Gh; Hassell Am; Kahler Km; Shewchuk Lm; Robert T. Gampe

Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is activated in response to a variety of endoplasmic reticulum stresses implicated in numerous disease states. Evidence that PERK is implicated in tumorigenesis and cancer cell survival stimulated our search for small molecule inhibitors. Through screening and lead optimization using the human PERK crystal structure, we discovered compound 38 (GSK2606414), an orally available, potent, and selective PERK inhibitor. Compound 38 inhibits PERK activation in cells and inhibits the growth of a human tumor xenograft in mice.


Cancer Research | 2008

Characterization of an Akt Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity

Nelson Rhodes; Dirk A. Heerding; Derek R. Duckett; Derek J. Eberwein; Victoria B. Knick; Timothy J. Lansing; Randy T. McConnell; Tona M. Gilmer; Shu-Yun Zhang; Kimberly Robell; Jason Kahana; Robert S. Geske; Elena Kleymenova; Anthony E. Choudhry; Zhihong Lai; Jack D. Leber; Elisabeth A. Minthorn; Susan L. Strum; Edgar R. Wood; Pearl S. Huang; Robert A. Copeland; Rakesh Kumar

Akt kinases 1, 2, and 3 are important regulators of cell survival and have been shown to be constitutively active in a variety of human tumors. GSK690693 is a novel ATP-competitive, low-nanomolar pan-Akt kinase inhibitor. It is selective for the Akt isoforms versus the majority of kinases in other families; however, it does inhibit additional members of the AGC kinase family. It causes dose-dependent reductions in the phosphorylation state of multiple proteins downstream of Akt, including GSK3 beta, PRAS40, and Forkhead. GSK690693 inhibited proliferation and induced apoptosis in a subset of tumor cells with potency consistent with intracellular inhibition of Akt kinase activity. In immune-compromised mice implanted with human BT474 breast carcinoma xenografts, a single i.p. administration of GSK690693 inhibited GSK3 beta phosphorylation in a dose- and time-dependent manner. After a single dose of GSK690693, >3 micromol/L drug concentration in BT474 tumor xenografts correlated with a sustained decrease in GSK3 beta phosphorylation. Consistent with the role of Akt in insulin signaling, treatment with GSK690693 resulted in acute and transient increases in blood glucose level. Daily administration of GSK690693 produced significant antitumor activity in mice bearing established human SKOV-3 ovarian, LNCaP prostate, and BT474 and HCC-1954 breast carcinoma xenografts. Immunohistochemical analysis of tumor xenografts after repeat dosing with GSK690693 showed reductions in phosphorylated Akt substrates in vivo. These results support further evaluation of GSK690693 as an anticancer agent.


Cancer Research | 2013

Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity

Charity Atkins; Qi Liu; Elisabeth A. Minthorn; Shu-Yun Zhang; David J Figueroa; Katherine G. Moss; Thomas B. Stanley; Brent Sanders; Aaron Goetz; Nathan Gaul; Anthony E. Choudhry; Hasan Alsaid; Beat M. Jucker; Jeffrey M. Axten; Rakesh Kumar

The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.


Journal of Medicinal Chemistry | 2008

Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase.

Dirk A. Heerding; Nelson Rhodes; Jack D. Leber; Tammy J. Clark; Richard M. Keenan; Louis Vincent Lafrance; Mei Li; Igor G. Safonov; Dennis T. Takata; Joseph W. Venslavsky; Dennis S. Yamashita; Anthony E. Choudhry; Robert A. Copeland; Zhihong Lai; Michael D. Schaber; Peter J. Tummino; Susan L. Strum; Edgar R. Wood; Derek R. Duckett; Derek J. Eberwein; Victoria B. Knick; Timothy J. Lansing; Randy T. McConnell; Shu-Yun Zhang; Elisabeth A. Minthorn; Nestor O. Concha; Gregory L. Warren; Rakesh Kumar

Overexpression of AKT has an antiapoptotic effect in many cell types, and expression of dominant negative AKT blocks the ability of a variety of growth factors to promote survival. Therefore, inhibitors of AKT kinase activity might be useful as monotherapy for the treatment of tumors with activated AKT. Herein, we describe our lead optimization studies culminating in the discovery of compound 3g (GSK690693). Compound 3g is a novel ATP competitive, pan-AKT kinase inhibitor with IC 50 values of 2, 13, and 9 nM against AKT1, 2, and 3, respectively. An X-ray cocrystal structure was solved with 3g and the kinase domain of AKT2, confirming that 3g bound in the ATP binding pocket. Compound 3g potently inhibits intracellular AKT activity as measured by the inhibition of the phosphorylation levels of GSK3beta. Intraperitoneal administration of 3g in immunocompromised mice results in the inhibition of GSK3beta phosphorylation and tumor growth in human breast carcinoma (BT474) xenografts.


Clinical Pharmacology & Therapeutics | 1999

A population pharmacokinetic-pharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis

Diane R. Mould; Charles B. Davis; Elisabeth A. Minthorn; Deborah C. Kwok; Michael J. Elliott; Michael E. Luggen; Mark C. Totoritis

Clenoliximab (IDEC‐151) is a macaque‐human chimeric monoclonal antibody (immunoglobulin G4) specific for the CD4 molecule on the surface of T lymphocytes. It is being studied in patients with rheumatoid arthritis in which T cell activation orchestrates inflammation and tissue damage. In this initial study in humans, the pharmacokinetics and pharmacodynamics of clenoliximab were investigated after single intravenous infusion. Blood was collected up to 12 weeks after dose administration to measure clenoliximab concentration, CD4+ T‐cell count, CD4 antigen coating, and CD4 cell surface density. Clenoliximab displayed nonlinear pharmacokinetic behavior and caused an 80% reduction in CD4 density for up to 3 weeks, without depleting T cells. A pharmacokinetic‐pharmacodynamic model was developed that described the relationship between antibody concentration, antigen coating, and the observed decreases in CD4 cell surface density. This was used to anticipate the effects of clenoliximab in untested regimens and optimize the design of future clinical trials.


ACS Medicinal Chemistry Letters | 2013

Discovery of GSK2656157: An Optimized PERK Inhibitor Selected for Preclinical Development.

Jeffrey Michael Axten; Stuart P. Romeril; Arthur Shu; Jeffrey Ralph; Jesus R. Medina; Yanhong Feng; William H. Li; Seth W. Grant; Dirk A. Heerding; Elisabeth A. Minthorn; Thomas Mencken; Nathan Gaul; Aaron Goetz; Thomas B. Stanley; Annie M. Hassell; Robert T. Gampe; Charity Atkins; Rakesh Kumar

We recently reported the discovery of GSK2606414 (1), a selective first in class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), which inhibited PERK activation in cells and demonstrated tumor growth inhibition in a human tumor xenograft in mice. In continuation of our drug discovery program, we applied a strategy to decrease inhibitor lipophilicity as a means to improve physical properties and pharmacokinetics. This report describes our medicinal chemistry optimization culminating in the discovery of the PERK inhibitor GSK2656157 (6), which was selected for advancement to preclinical development.


Clinical Pharmacology & Therapeutics | 2002

Pharmacokinetic and pharmacodynamic modeling of humanized anti-factor IX antibody (SB 249417) in humans.

Fung‐Sing Chow; Lisa J. Benincosa; Sunita Sheth; Douglas Wilson; Charles B. Davis; Elisabeth A. Minthorn; William Jusko

SB 249417 is a humanized anti‐factor IX/IXa antibody that, on administration to rats and monkeys, produces an immediate suppression of factor IX activity and prolongation of activated partial thromboplastin times (aPTT).


PLOS ONE | 2014

Discovery of Novel AKT Inhibitors with Enhanced Anti-Tumor Effects in Combination with the MEK Inhibitor

Melissa Dumble; Ming-Chih Crouthamel; Shu-Yun Zhang; Michael D. Schaber; Dana S. Levy; Kimberly A. Robell; Qi Liu; David J Figueroa; Elisabeth A. Minthorn; Mark A. Seefeld; Meagan B. Rouse; Sridhar Rabindran; Dirk A. Heerding; Rakesh Kumar

Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel hydroxyl tricyclics (e.g., GSK966587) as potent inhibitors of bacterial type IIA topoisomerases

Timothy James Miles; Alan Joseph Hennessy; Ben Bax; Gerald Brooks; Barry S. Brown; Pamela Brown; Nathalie Cailleau; Dongzhao Chen; Steven Dabbs; David Thomas Davies; Joel M. Esken; Ilaria Giordano; Jennifer Hoover; Jianzhong Huang; Graham Elgin Jones; Senthill K. Kusalakumari Sukmar; Claus Spitzfaden; Roger Edward Markwell; Elisabeth A. Minthorn; Steve Rittenhouse; Michael N. Gwynn; Neil David Pearson

During the course of our research to find novel mode of action antibacterials, we discovered a series of hydroxyl tricyclic compounds that showed good potency against Gram-positive and Gram-negative pathogens. These compounds inhibit bacterial type IIA topoisomerases. Herein we will discuss structure-activity relationships in this series and report advanced studies on compound 1 (GSK966587) which demonstrates good PK and in vivo efficacy properties. X-ray crystallographic studies were used to provide insight into the structural basis for the difference in antibacterial potency between enantiomers.


Clinical Pharmacokinectics | 2011

Pharmacokinetics and Pharmacodynamics of Mepolizumab, an Anti-Interleukin-5 Monoclonal Antibody

Deborah A. Smith; Elisabeth A. Minthorn; Misba Beerahee

Mepolizumab is a fully humanized monoclonal antibody (IgG1/κ) targeting human interleukin-5 (IL-5), a key haematopoietin needed for eosinophil development and function. Mepolizumab blocks human IL-5 from binding to the α-chain of the IL-5 receptor complex on the eosinophil cell surface, thereby inhibiting IL-5 signalling. The pharmacokinetics of mepolizumab have been evaluated in clinical studies at doses of 0.05–10 mg/kg and at 250 mg, 750 mg and 1500 mg. Mepolizumab was eliminated slowly, with mean initial and terminal phase half-life values of approximately 2 and 20 days, respectively. Plasma clearance ranged from 0.064 to 0.163 mL/h/kg and steady-state volume of distribution ranged from 49 to 93mL/kg. Pharmacokinetics were dose proportional and time independent. Estimates based on a two-compartment intravenous infusion model from patients with asthma or healthy subjects following single doses predicted mepolizumab plasma concentrations in multiple-dose studies involving patients with hypereosinophilic syndrome (HES), asthma or eosinophilic oesophagitis. The absolute bioavailability of mepolizumab was 64–75% following subcutaneous injection and 81% following intramuscular injection. Peripheral blood eosinophil levels decreased in healthy subjects and patients with HES, asthma, eosinophilic oesophagitis or atopic dermatitis after intravenous mepolizumab infusion and subcutaneous injection. Reductions in eosinophil counts in oesophagus, sputum, skin, bone marrow, nasal lavage fluid and/or bronchial mucosa after treatment with mepolizumab were observed in placebo-controlled studies in various indications. The relationship between percentage change from baseline in blood eosinophils and mepolizumab plasma concentrations was described by an indirect pharmacological response model. The estimated maximal decrease in eosinophil count was approximately 85% from baseline and the half-maximal inhibitory concentration (IC50) was approximately 0.45 mg/mL.

Collaboration


Dive into the Elisabeth A. Minthorn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge