Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth B. Webb is active.

Publication


Featured researches published by Elisabeth B. Webb.


Journal of Wildlife Management | 2010

Effects of Local and Landscape Variables on Wetland Bird Habitat Use During Migration Through the Rainwater Basin

Elisabeth B. Webb; Loren M. Smith; Mark P. Vrtiska; Theodore G. LaGrange

Abstract Staging areas and migratory stopovers of wetland birds can function as geographic bottlenecks; common dependence among migratory wetland bird species on these sites has major implications for wetland conservation. Although 90% of playa wetlands in the Rainwater Basin (RWB) region of Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for up to 10 million waterfowl each spring. Our objectives were to determine local (within wetland and immediate watershed) and landscape-scale factors influencing wetland bird abundance and species richness during spring migration at RWB playas. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 1.6 million individual migratory wetland birds representing 72 species during spring migrations 2002–2004. We tested a priori hypotheses about whether local and landscape variables influenced overall species richness and abundance of geese, dabbling ducks, diving ducks, and shorebirds. Wetland area had a positive influence on goose abundance in all years, whereas percent emergent vegetation and hunting pressure had negative influences. Models predicting dabbling duck abundance differed among years; however, individual wetland area and area of semipermanent wetlands within 10 km of the study wetland consistently had a positive influence on dabbling duck abundance. Percent emergent vegetation also was a positive predictor of dabbling duck abundance in all years, indicating that wetlands with intermediate (50%) vegetation coverage have the greatest dabbling duck abundance. Shorebird abundance was positively influenced by wetland area and number of wetlands within 10 km and negatively influenced by water depth. Wetland area, water depth, and area of wetlands within 10 km were all equally important in models predicting overall species richness. Total species richness was positively influenced by wetland area and negatively influenced by water depth and area of semipermanent wetlands within 10 km. Avian species richness also was greatest in wetlands with intermediate vegetation coverage. Restoring playa hydrology should promote intermediate percent cover of emergent vegetation, which will increase use by dabbling ducks and shorebirds, and decrease snow goose (Chen caerulescens) use of these wetlands. We observed a reduction in dabbling duck abundance on wetlands open to spring snow goose hunting and recommend further investigation of the effects of this conservation order on nontarget species. Our results indicate that wildlife managers at migration stopover areas should conserve wetlands in complexes to meet the continuing and future habitat requirements of migratory birds, especially dabbling ducks, during spring migration.


PLOS ONE | 2013

Quantitative and qualitative approaches to identifying migration chronology in a continental migrant

William S. Beatty; Dylan C. Kesler; Elisabeth B. Webb; Andrew H. Raedeke; Luke W. Naylor; Dale D. Humburg

The degree to which extrinsic factors influence migration chronology in North American waterfowl has not been quantified, particularly for dabbling ducks. Previous studies have examined waterfowl migration using various methods, however, quantitative approaches to define avian migration chronology over broad spatio-temporal scales are limited, and the implications for using different approaches have not been assessed. We used movement data from 19 female adult mallards (Anas platyrhynchos) equipped with solar-powered global positioning system satellite transmitters to evaluate two individual level approaches for quantifying migration chronology. The first approach defined migration based on individual movements among geopolitical boundaries (state, provincial, international), whereas the second method modeled net displacement as a function of time using nonlinear models. Differences in migration chronologies identified by each of the approaches were examined with analysis of variance. The geopolitical method identified mean autumn migration midpoints at 15 November 2010 and 13 November 2011, whereas the net displacement method identified midpoints at 15 November 2010 and 14 November 2011. The mean midpoints for spring migration were 3 April 2011 and 20 March 2012 using the geopolitical method and 31 March 2011 and 22 March 2012 using the net displacement method. The duration, initiation date, midpoint, and termination date for both autumn and spring migration did not differ between the two individual level approaches. Although we did not detect differences in migration parameters between the different approaches, the net displacement metric offers broad potential to address questions in movement ecology for migrating species. Ultimately, an objective definition of migration chronology will allow researchers to obtain a comprehensive understanding of the extrinsic factors that drive migration at the individual and population levels. As a result, targeted conservation plans can be developed to support planning for habitat management and evaluation of long-term climate effects.


Journal of Fish and Wildlife Management | 2013

Diets and Food Selection of Female Mallards and Blue-Winged Teal During Spring Migration

Paul R. Tidwell; Elisabeth B. Webb; Mark P. Vrtiska; Andrew A. Bishop

Abstract Waterfowl nutritional requirements and food availability at migration stopover habitats may differ from those at nesting or wintering areas. Although there is little information on factors that influence waterfowl diets and food selection during migration, we hypothesized that bird age and wetland density in the surrounding landscape would influence food selection. Thus, the objective of this study was to quantify mallard Anas platyrhynchos and blue-winged teal Anas discors diets during migration and evaluate effects of age and wetland density on waterfowl food selection. We collected 30 mallards and 29 blue-winged teal with food items present in esophagi from wetlands in south-central Nebraska during spring 2008 and 2009. Smartweed Polygonum spp. and barnyard grass Echinochloa spp. were the most common seeds found in both mallards and blue-winged teal, while Naididae and Chironomidae larvae were the most common invertebrates in mallard and blue-winged teal diets, respectively. Invertebrates were...


Journal of Wildlife Management | 2010

Community Structure of Wetland Birds During Spring Migration Through the Rainwater Basin

Elisabeth B. Webb; Loren M. Smith; Mark P. Vrtiska; Theodore G. LaGrange

Abstract Staging areas and migratory stopovers of wetland birds have the potential to function as geographic bottlenecks; entire populations within a flyway may be affected by the quality and quantity of available wetland habitat at stopover sites. Although approximately 90% of playa wetlands in the Rainwater Basin (RWB) region of south-central Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for >10 million waterfowl each spring. We evaluated community patterns and species associations to assess importance of assembly rules in structuring wetland bird communities during migration and to better facilitate multispecies conservation and management strategies. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 2.6 million individual migratory wetland birds representing 72 species during 3 spring migrations 2002–2004. We evaluated spatial and temporal species co-occurrence patterns of geese, dabbling ducks, diving ducks, and shorebirds using null model analysis. Goose species co-occurrence scores did not differ from random in any year of the study, suggesting that goose species frequently use the same habitats during migration. Co-occurrence patterns among dabbling ducks were not different than expected by chance in any year; however, when we evaluated co-occurrence at a weekly scale, dabbling ducks co-occurred less often than expected during weeks of peak migration (high abundance), indicating that dabbling duck species spatially segregated at high densities. Diving duck co-occurrence patterns did not differ from random in any year, suggesting that diving duck species used the same habitats during migration. Shorebird species co-occurred less often than expected in 2002 and 2004, and during weeks of high shorebird abundance, indicating that shorebird communities were distinctly structured during those times. Most association values among lesser snow geese (Chen caerulescens) and dabbling duck species were positive, indicating dabbling ducks did not avoid wetlands with snow geese, a concern for waterfowl managers. However, we frequently observed snow geese and dabbling ducks using different microhabitats within a wetland, which indicate species associations and co-occurrence patterns may have occurred at a finer spatial scale than we measured. This approach of co-occurrence analysis will allow wildlife managers charged with multispecies management at migration stopover sites to make informed conservation and management decisions based on community structure rather than historic single-species approaches.


Waterbirds | 2011

Factors Influencing Behavior of Wetland Birds in the Rainwater Basin during Spring Migration

Elisabeth B. Webb; Loren M. Smith; Mark P. Vrtiska; Theodore G. LaGrange

Abstract. As little is known about specific factors influencing wetland birds during migration, the effects of time period, hunting pressure, and year on wetland bird behavior were evaluated during spring migration. Avian behavior was quantified on 36–40 playa wetlands in the Rainwater Basin region of Nebraska, during springs 2002–2004. Multivariate analysis of variance was used to test for differences in behavior among time periods, hunting categories (closed to hunting, hunted wetlands in-season, and hunted wetlands post-season), and years for geese, dabbling ducks, diving ducks, and shorebirds, as well as among two species of management concern; Greater White-fronted Geese (Anser albifrons) and Northern Pintails (Anas acuta). Overall, goose behavior did not differ among time periods or years; however, a greater percentage of geese were observed feeding in wetlands closed to hunting (11%) than on hunted wetlands in-season (5%). A smaller percentage of dabbling ducks was observed feeding on hunted wetlands in-season (19%) than on wetlands closed to hunting (24%) or on hunted wetlands post-season (28%). Diving duck and shorebird behavior did not differ among time periods, years, or hunting categories. Although spring hunting was implemented to reduce the light goose population, it may also be negatively influencing habitat quality at migration stopover sites for geese and dabbling ducks. Managers should consider limiting spring hunting disturbance on temporary and seasonal wetlands, where dabbling ducks spend more time foraging, than on semi-permanent wetlands.


Wildlife Biology | 2015

Effects of the light goose conservation order on non-target waterfowl distribution during spring migration

Andrew J. Dinges; Elisabeth B. Webb; Mark P. Vrtiska

The Light Goose Conservation Order (LGCO) was initiated in 1999 to reduce mid-continent populations of light geese (lesser snow geese Chen caerulescens and Rosss geese C. rossi). However, concern about potential for LGCO activities (i.e. hunting activities) to negatively impact non-target waterfowl species during spring migration in the Rainwater Basin (RWB) of Nebraska prompted agency personnel to limit the number of hunt days each week and close multiple public wetlands to LGCO activities entirely. To evaluate the effects of the LGCO in the RWB, we quantified waterfowl density at wetlands open and closed to LGCO hunting and recorded all hunter encounters during springs 2011 and 2012. We encountered a total of 70 hunting parties on 22 study wetlands, with over 90% of these encounters occurring during early season when the majority of waterfowl used the RWB region. We detected greater overall densities of dabbling ducks Anas spp., as well as for mallards A. platyrhynchos and northern pintails A. acuta on wetlands closed to the LGCO. We detected no effects of hunt day in the analyses of dabbling duck densities. We detected no differences in mean weekly dabbling duck densities among wetlands open to hunting, regardless of weekly or cumulative hunting encounter frequency throughout early season. Additionally, hunting category was not a predictor for the presence of greater white-fronted geese Anser albifrons in a logistic regression model. Given that dabbling duck densities were greater on wetlands closed to hunting, providing wetlands free from hunting disturbance as refugia during the LGCO remains an important management strategy at migration stopover sites. However, given that we did not detect an effect of hunt day or hunting frequency on dabbling duck density, our results suggest increased hunting frequency at sites already open to hunting would likely have minimal impacts on the distribution of non-target waterfowl species using the region for spring staging.


Ecological Applications | 2018

Neonicotinoid insecticides negatively affect performance measures of non‐target terrestrial arthropods: a meta‐analysis

Anson R. Main; Elisabeth B. Webb; Keith W. Goyne; Doreen C. Mengel

Neonicotinoid insecticides are currently the fastest-growing and most widely used insecticide class worldwide. Valued for their versatility in application, these insecticides may cause deleterious effects in a range of non-target (beneficial) arthropods. However, it remains unclear whether strong patterns exist in terms of their major effects, if broad measures of arthropod performance are negatively affected, or whether different functional groups are equally vulnerable. Here, we present a meta-analysis of 372 observations from 44 field and laboratory studies that describe neonicotinoid effects on 14 arthropod orders across five broad performance measures: abundance, behavior, condition, reproductive success, and survival. Across studies, neonicotinoids negatively affected all performance metrics evaluated; however, magnitude of the effects varied. Arthropod behavior and survival were the most negatively affected and abundance was the least negatively affected. Effects on arthropod functional groups were inconsistent. Pollinator condition, reproductive success, and survival were significantly lower in neonicotinoid treatments compared to untreated controls; whereas, neonicotinoid effects on detritivores were not significant. Although magnitude of arthropod response to neonicotinoids varied among performance measures and functional groups, we documented a consistent negative relationship between exposure to neonicotinoid insecticides in published studies and beneficial arthropod performance.


Southeastern Naturalist | 2014

Comprehensive Framework for Ecological Assessment of the Migratory Bird Habitat Initiative Following the Deepwater Horizon Oil Spill

J. Brian Davis; Elisabeth B. Webb; Richard M. Kaminski; Philip J. Barbour; Francisco J. Vilella

Abstract Following the Deepwater Horizon oil spill in the Gulf of Mexico in April 2010, the USDA Natural Resources Conservation Service (NRCS) established and funded the Migratory Bird Habitat Initiative (MBHI), with the goal of improving and increasing wetland habitats on private lands to benefit wintering and migrating waterbirds displaced from oil-impacted coastal wetlands. The NRCS and conservation partners provided financial and technical assistance to landowners and managers of sites enrolled in various conservation easement programs, and incorporated approximately 190,000 ha of wetlands and agricultural lands in the Mississippi Alluvial Valley (MAV) and Gulf Coast regions in the MBHI. In fall 2010, the NRCS worked with scientists and graduate students from three universities and various conservation agencies to design and implement landscape-scale evaluations of (1) the use of MBHI-managed wetlands and comparable non-MBHI wetlands by Charadriiformes (shorebirds), Anseriformes (waterfowl), and other waterbirds; and (2) the relative effectiveness of different MBHI practices for providing habitat and food resources for migrating, resident, and wintering waterbirds. In this paper, we describe the scientific framework designed to evaluate the MBHI in improving waterbird habitats on private lands in the MAV, the Gulf Coast Prairies in Louisiana and Texas, and Gulf coastal wetlands of Mississippi and Alabama. The results of our evaluation will enhance our understanding of the influence of MBHI, other Farm Bill Conservation Initiative managed lands (e.g., Wetland Reserve Program), and selected agricultural working lands (e.g., Oryza sativa L. [Rice] fields in southern Louisiana and Texas) on wintering and migrating waterbirds. A proactive approach that uses science to evaluate governmental conservation programs is relevant and can inform development of meaningful public policy that likely will be needed for effective delivery of future conservation programs and to justify financial incentives paid to landowners to apply best management practices.


Archive | 2016

Invertebrates in Managed Waterfowl Marshes

Joshua D. Stafford; Adam K. Janke; Elisabeth B. Webb; Steven R. Chipps

Invertebrates are an important food for breeding, migrating, and wintering waterfowl. Sparse study has been devoted to understanding the influence of waterfowl and wetland management on production of invertebrates for waterfowl foods; however, manipulation of hydrology and soils may change or enhance production. Fish can compete with waterfowl for invertebrate forage in wetlands and harm aquatic macrophytes; biomanipulation (e.g., stocking piscivores) may improve waterfowl habitat quality. Similarly, some terrestrial vertebrates (e.g., beaver (Castor canadensis)) may positively or negatively impact invertebrate communities in waterfowl habitats. Various challenges exist to wetland management for invertebrates for waterfowl, but the lack of data on factors influencing production may be the most limiting.


Physiology & Behavior | 2017

Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

Sean T. O'Daniels; Dylan C. Kesler; Jeanne D. Mihail; Elisabeth B. Webb; Scott J. Werner

Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

Collaboration


Dive into the Elisabeth B. Webb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark P. Vrtiska

Nebraska Game and Parks Commission

View shared research outputs
Top Co-Authors

Avatar

Andrew H. Raedeke

Missouri Department of Conservation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore G. LaGrange

Nebraska Game and Parks Commission

View shared research outputs
Top Co-Authors

Avatar

Doreen C. Mengel

Missouri Department of Conservation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Soulliere

United States Fish and Wildlife Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge