Elisabeth Corvazier
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisabeth Corvazier.
Journal of Biological Chemistry | 1996
Clarice Magnier-Gaubil; Jean-Marc Herbert; Rozenn Quarck; Béla Papp; Elisabeth Corvazier; Frank Wuytack; Sylviane Levy-Toledano; Jocelyne Enouf
The role of Ca2+ influx in the regulation of the sarco-endoplasmic reticulum Ca2+ATPases (SERCA) associated with intracellular Ca2+ pools was investigated during smooth muscle cell (SMC) proliferation induced by platelet-derived growth factor (PDGF). We first defined that the previously described up-regulation of the SERCA2a isoform found in vascular SMC after a 24-h stimulation with PDGF (Magnier, C., Papp, B., Corvazier, E., Bredoux, R., Wuytack, F., Eggermont, F., Maclouf, J., and Enouf, J. (1992) J. Biol. Chem. 267, 15808-15815) was precisely associated with SMC entry into S phase as it appeared linked with [3H]thymidine incorporation. This was further confirmed by testing the effect of transforming growth factor-β1, which inhibited both aortic SMC proliferation associated with G1 cell cycle arrest and PDGF-induced SERCA2a up-stimulation. Then, we tested the role of Ca2+ influx by using SR 33805, a new Ca2+ channel blocker, which was characterized with regard to the voltage Ca2+ channel blocker nifedipine and the capacitative entry Ca2+ blocker SKF 96365. SR 33805 was found to be the most potent inhibitor of both PDGF-induced SMC proliferation and the associated rise in intracellular Ca2+ concentration with IC50 values of 0.2 ± 0.1 and 0.31 ± 0. 04 µM, respectively. Finally, by examining in parallel both SERCA2a and SERCA2b isoforms, in terms of activity and expression, we could determine that PDGF-induced stimulation of total SERCA activity (detected by formation of the phosphorylated intermediate, E∼P) and of SERCA2a expression (Western blotting) were abolished when extracellular Ca2+ entry was prevented by SR 33805. This study demonstrates that SERCA2a up-regulation is: 1) related to the G1/S transition step of cell cycle and 2) dependent on Ca2+ entry during PDGF-induced SMC proliferation.
Biochimica et Biophysica Acta | 1985
Elisabeth Corvazier; Jacques Maclouf
The effect of ten flavonoids was studied on the stimulation of washed human platelets by either arachidonic acid or thrombin. The oxygenated metabolites released were analyzed by radioimmunoassay, glass-capillary-column gas chromatography and high-pressure liquid chromatography. No effect was evidenced for naringenin, rutinose and phloridzin up to 1000 microM. Thromboxane B2 and 12-hydroxyeicosatetraenoic acid production was depressed simultaneously by all other compounds at different IC50. When tested for their effect on reversibility, however, cyclooxygenase and lipoxygenase inhibition was found to be different depending upon the flavonoid used. All compounds, except morin and rutin, inhibited platelet aggregation and [14C]serotonin release with parallel inhibition of thromboxane synthesis when tested on arachidonic acid-induced platelet-rich plasma stimulation. Some flavonoids inhibited the metabolism of human neutrophils stimulated by ionophore A23187 as assessed by high-performance liquid chromatography. Our results show that flavonoids interfere with the different oxidative metabolisms of arachidonic acid. No clearcut specificity could be found between one compound and one metabolic pathway.
Biochemical Journal | 2006
Saoussen Dally; Raymonde Bredoux; Elisabeth Corvazier; Jens Peter Andersen; Johannes D. Clausen; Leonard Dode; Mohammed Fanchaouy; Pascal Gelebart; Virginie Monceau; Frederica Del Monte; Judith K. Gwathmey; Roger J. Hajjar; Chiraz Chaabane; Regis Bobe; Aly Raies; Jocelyne Enouf
We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676-684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166+/-26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.
Platelets | 2005
Regis Bobe; Raymonde Bredoux; Elisabeth Corvazier; Christine Lacabaratz-Porret; Virginie Martin; Tünde Kovács; Jocelyne Enouf
Ca2+ signaling plays a key role in normal and abnormal platelet functions. Understanding platelet Ca2+ signaling requires the knowledge of proteins involved in this process. Among these proteins are Ca2+ATPases or Ca2+ pumps that deplete the cytosol of Ca2+ ions. Here, we will particularly focus on two Ca2+ pump families: the plasma membrane Ca2+ATPases (PMCAs) that extrude cytosolic Ca2+ towards the extracellular medium and the sarco/endoplasmic reticulum Ca2+ATPases (SERCAs) that pump Ca2+ into the endoplasmic reticulum (ER). In the present review, we will summarize data on platelet Ca2+ATPases including their identification and biogenesis. First of all, we will present the Ca2+ATPase genes and their isoforms expressed in platelets. We will especially focus on a member of the SERCA family, SERCA3, recently found to give rise to a number of species-specific isoforms. Next, we will describe the differences in Ca2+ATPase patterns observed in human and rat platelets. Last, we will analyze how the expression of Ca2+ATPase isoforms changes during megakaryocytic maturation and show that megakaryocytopoiesis is associated with a profound reorganization of the expression and/or activity of Ca2+ATPases. Taken together, these data provide new aspects of investigations to better understand normal and abnormal platelet Ca2+ signaling.
Cell Calcium | 2009
Saoussen Dally; Virginie Monceau; Elisabeth Corvazier; Raymonde Bredoux; Aly Raies; Regis Bobe; Federica del Monte; Jocelyne Enouf
The human sarco/endoplasmic reticulum (ER) Ca(2+)ATPase 3 (SERCA3) gene gives rise to SERCA3a-3f isoforms, the latter inducing ER stress in vitro. Here, we first demonstrated the co-expression of SERCA3a, -3d and -3f proteins in the heart. Evidence for endogenous proteins was obtained by using isoform-specific antibodies including a new SERCA3d-specific antibody, and either Western blotting of protein lysates or immunoprecipitation of membrane proteins. An immunolocalization study of both left ventricle tissue and isolated cardiomyocytes showed a distinct compartmentalization of the SERCA3 isoforms, as a uniform distribution of SERCA3a was detected while -3d and -3f isoforms were observed around the nucleus and in close vicinity of plasma membrane, respectively. Second, we studied their expressions in failing hearts including mixed (MCM) (n=1) and idiopathic dilated (IDCM) cardiomyopathies (n=4). Compared with controls (n=5), similar expressions of SERCA3a and -3d mRNAs were observed in all patients. In contrast, SERCA3f mRNA was found to be up-regulated in failing hearts (125+/-7%). Remarkably, overexpression of SERCA3f paralleled an increase in ER stress markers including processing of X-box-binding protein-1 (XBP-1) mRNA (176+/-24%), and expression of XBP-1 protein and glucose-regulated protein (GRP)78 (232+/-21%). These findings revisit the human hearts Ca(2+)ATPase system and indicate that SERCA3f may account for the mechanism of ER stress in vivo in heart failure.
Biochemical Journal | 2000
Christine Lacabaratz-Porret; Sophie Launay; Elisabeth Corvazier; Raymonde Bredoux; Béla Papp; Jocelyne Enouf
The endoplasmic reticulum (ER) plays a key role in Ca(2+) signalling through Ca(2+) release via inositol 1,4,5-trisphosphate receptors (InsP(3)-Rs) and Ca(2+) uptake by sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs). Here, we investigated the organization of platelet ER and its biogenesis during megakaryocytopoiesis. First, erythro/megakaryoblastic MEG 01, UT7, M-O7e and CHRF 288-11 cell lines, platelets and thrombopoietin-induced UT7-Mpl cells were selected for the study of SERCA2b and SERCA3 proteins by Western blotting using the antibodies IID8 and PL/IM430, respectively. As judged by platelet glycoprotein IIIa (GPIIIa) expression, an increase in SERCA3 proteins was observed while that of SERCA2b remained unchanged throughout maturation. Second, these studies were extended to the newly described alternatively spliced SERCA3a-c RNAs and InsP(3)-Rs using the in vitro model of PMA-induced differentiation of MEG 01 cells. Time-course and dose-response studies showed a maximal approx. 4-fold up-regulation of SERCA3 proteins using 10(-8) M PMA for 3 days, which paralleled induction of GPIIIa expression. SERCA3 induction was found to occur at the level of mRNA. The modulation of the different SERCA3 species (i.e. 3a, 3b and 3c) was isoform-specific: while SERCA3a was slightly increased, an approx. 3-fold induction of SERCA3b, and a 4-fold induction of SERCA3c, was observed after 24 h of PMA treatment. Isoform-specific Western blotting and/or reverse transcriptase PCR studies showed that InsP(3)-R types I, II and III are expressed in MEG 01 cells, as well as in platelets. Study of the expression of these InsP(3)-R types in PMA-induced MEG 01 cells revealed that: (i) InsP(3)-RI protein and mRNA showed no changes; (ii) InsP(3)-RII mRNA was up-regulated and peaked at hour 48 and (iii) InsP(3)-RIII mRNA and protein showed a transitory maximal 3- and 2.3-fold increase at hours 6 and 30, respectively. Upon PMA treatment of CHRF 288-11 cells, in which GPIIIa is not induced upon treatment, a similar pattern of regulation of InsP(3)-R types II and III was seen, but a distinct pattern of SERCA3 regulation was observed. These results suggest a profound reorganization of ER-protein patterns during megakaryocytopoiesis and underline the role of SERCA3 gene regulation in the control of Ca(2+)-dependent platelet functions.
Hypertension | 2000
Virginie Martin; Raymonde Bredoux; Elisabeth Corvazier; Béla Papp; Jocelyne Enouf
Abstract —Gaining insight into nonmuscle Ca2+ signaling requires basic knowledge of the major structures involved. We investigated the expression of platelet Ca2+ATPases in normal and hypertension-associated abnormal Ca2+ signaling. First, overall identification of normotensive Wistar-Kyoto rat Ca2+ATPases was attempted by looking for newly described human platelet 3′-end alternatively spliced sarco/endoplasmic reticulum Ca2+ATPases (SERCA) 3b mRNA and plasma membrane Ca2+ATPase (PMCA) 1b and 4b proteins, in addition to SERCA2b and SERCA3a isoforms. For SERCAs, comparative analyses of human and Wistar-Kyoto rat SERCA3 platelet mRNA by reverse transcription–polymerase chain reaction (RT-PCR) followed by sequencing established that human platelets coexpressed SERCA3b and a third SERCA3c, while rat cells were devoid of them but expressed a still unknown splice variant that we termed rSERCA3b/3c. Its identification using 3′-end SERCA3 gene and rapid amplification of cDNA ends (RACE)–PCR studies showed that it results from an additional SERCA3 alternative splicing process, which uses a second alternative polyadenylation site located in the last intron. For PMCAs, with the use of gene-specific RT-PCR followed by sequencing and Western blotting using 5F10 monoclonal antibody, expression of human and rat platelet PMCA1b and PMCA4b was similar. Second, comparative analysis of these newly identified Ca2+ATPases and SERCA3a in age-matched spontaneously hypertensive rat platelets demonstrated (1) a marked downregulation of rSERCA3b/3c, which became null, and a 1.71-fold increase in SERCA3a and (2) an opposite regulation of the 2 PMCAs, namely, a 3.3-fold decrease in PMCA1b mRNA and a 3.7-fold increase in PMCA4b mRNA. Hence, platelets coexpress multiple, diverse, and species-specific Ca2+ATPases, including a novel fourth SERCA3. Moreover, expression of PMCA (1b and 4b), SERCA3a, and rSERCA3b/3c was modulated in rat hypertension. Hence, Ca2+ATPases should be regarded as constituting a new rational basis for the understanding of nonmuscle cell Ca2+ signaling.
British Journal of Haematology | 1997
Tünde Kovàcs; Gaetan Berger; Elisabeth Corvazier; Katalin Pászty; Angie S. Brown; Regis Bobe; Béla Papp; Frank Wuytack; Elisabeth M. Cramer; Jocelyne Enouf
We recently identified a multi‐SERCA (sarco/endoplasmic reticulum Ca2+ ATPase) system in haemopoietic cells comprising the SERCA 2b, SERCA 3 and a new monoclonal anti‐Ca2+ ATPase antibody (PL/IM 430) recognizable SERCA isoforms. We have now investigated the subcellular localization of these enzymes in human platelets by Western blotting of subcellular membrane fractions and by immunoelectron microscopy. We precisely defined the recognition specificity of the polyclonal anti‐SERCA 2b, anti‐SERCA 3, anti‐SERCA 1 antibodies as well as of the monoclonal antibody PL/IM 430 by testing their recognition of the tryptic fragments of the SERCA isoforms. The analysis of fragmented membranes enriched in plasma membrane and intracellular membrane components by Western blotting showed that the SERCA 2b and the SERCA 3 isoforms were found in both the plasma membrane and the intracellular membrane fractions, whereas the PL/IM 430 recognizable SERCA isoform was restricted to membranes associated with the plasma membrane fraction. The immunoelectron microscopical study of the SERCA isoforms in resting platelets showed that: (i) the SERCA 2b isoform was expressed in membranes associated with the plasma membrane and open canalicular system, some α‐granules and in unidentified membranes; (ii) the SERCA 3 isoform was found associated with plasma and intracellular membranes; and (iii) the PL/IM 430 recognizable SERCA isoform was observed only in structures associated with the cytoplasmic face of the plasma membranes, as confirmed by flow cytometry. Finally, since the PL/IM 430 antibody was raised against intracellular membranes, we looked for a potential membrane redistribution during the isolation procedure used for the preparation of the immunizing membranes. Neuraminidase treatment indeed induced a translocation of the PL/IM 430 recognizable SERCA isoform from plasma to intracellular membranes. Thus, the multi‐SERCA system in platelets: (i) is distributed over different platelet membranes, (ii) presents a sub‐compartmental organization with some overlapping, and (iii) is partly associated with motile membranes, reflecting an unrecognized level of complexity of Ca2+ stores in these cells.
Prostaglandins | 1986
Jacques Maclouf; Elisabeth Corvazier; Zhaoyue Wang
A sensitive and specific radioimmunoassay for prostaglandin D2 has been developed using its stabilized 11-methoxime derivative, which was obtained after treatment of prostaglandin D2 with methoxamine-HCl. The antiserum was obtained after injection of prostaglandin D2-methoxamine coupled to bovine serum albumin. A (125I)-Histamide prostaglandin D2-methoxamine tracer was prepared by iodination of the corresponding histamide, followed by thin layer chromatography purification. The sensitivity of the assay was 280 femtomoles per ml at 50% displacement. The cross reactivities were 15% with prostaglandin D1-methoxamine and less than 0.20% with other prostaglandins. Determination of the half-life of prostaglandin D2 in a solution containing albumin was also carried out, since it has been shown to catalyze prostaglandin D2 destruction. The unstability of this prostaglandin is due to the presence of a beta-hydroxy ketone group, and all prostaglandins possessing this labile moiety could be stabilized by such a derivatization before developing a radioimmunoassay.
Journal of Thrombosis and Haemostasis | 2007
Chiraz Chaabane; Saoussen Dally; Elisabeth Corvazier; Raymonde Bredoux; Regis Bobe; B. Ftouhi; Aly Raies; Jocelyne Enouf
Summary. Background: Previous studies have shown platelet Ca2+ abnormalities in diabetes mellitus and some reports suggest abnormal platelet production. Platelet Ca2+ homeostasis is controlled by a multi‐Ca2+‐ATPase system that includes two plasma membrane Ca2+‐ATPase (PMCA) and seven sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) isoforms. In addition, we recently found that the expression of PMCA4b and SERCA3 isoforms may serve as new markers of abnormal megakaryocytopoiesis [Nurden P et al. Impaired megakaryocytopoiesis in type 2B von Willebrand disease with severe thrombocytopenia. Blood 2006; 108: 2587–95]. Aim: To analyze the expression of major platelet Ca2+‐ATPases in 27 patients with type 1 or type 2 diabetes (T1D or T2D) compared with normal donors. Methods: Investigation of protein and mRNA expressions of PMCA1b and PMCA4b, and SERCA2b, SERCA3a and SERCA3b, using specific Western blotting and reverse transcriptase‐polymerase chain reaction, respectively. Results: Remarkably, all patients with T1D were found to present a higher expression of PMCA4b protein (212% ± 28%; n = 10) and PMCA4b mRNA (155% ± 16%; n = 17), coupled with a higher expression of SERCA3b mRNA (165% ± 9%) in some cases. Patients with T2D (n = 10) were also studied for protein expression and were found to present similar major upregulation of the expression of PMCA4b protein (180% ± 28%; n = 10). Lastly, five of 10 patients with T1D were studied for PMCA4b expression after insulin treatment, with four of five recovering normal expression (96% ± 15%; n = 5). Conclusions: Compared with the expression of PMCA4b upon platelet maturation, platelets from diabetic patients exhibit similarities with immature megakaryocytes. Thus, this study reinforces the idea that abnormal megakaryocytopoiesis can provide additional insights into diabetes and could represent a novel therapeutic target for antithrombotic drugs.