Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Dietschi is active.

Publication


Featured researches published by Elisabeth Dietschi.


PLOS Genetics | 2011

LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs

Eija H. Seppälä; Tarja S. Jokinen; Masaki Fukata; Yuko Fukata; Matthew T. Webster; Elinor K. Karlsson; Sami Kilpinen; Frank Steffen; Elisabeth Dietschi; Tosso Leeb; Ranja Eklund; Xiaochu Zhao; Jennifer J. Rilstone; Kerstin Lindblad-Toh; Berge A. Minassian; Hannes Lohi

One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2–10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.


PLOS Genetics | 2015

A Missense Change in the ATG4D Gene Links Aberrant Autophagy to a Neurodegenerative Vacuolar Storage Disease

Kaisa Kyöstilä; P. Syrjä; Vidhya Jagannathan; Gayathri Chandrasekar; Tarja S. Jokinen; Eija H. Seppälä; Doreen Becker; Michaela Drögemüller; Elisabeth Dietschi; Cord Drögemüller; Johann Lang; Frank Steffen; Cecilia Rohdin; Karin Hultin Jäderlund; Anu K. Lappalainen; Kerstin Hahn; Peter Wohlsein; Wolfgang Baumgärtner; Diana Henke; Anna Oevermann; Juha Kere; Hannes Lohi; Tosso Leeb

Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.


PLOS ONE | 2013

A COL11A2 Mutation in Labrador Retrievers with Mild Disproportionate Dwarfism

Mirjam Frischknecht; Helena Niehof-Oellers; Vidhya Jagannathan; Marta Owczarek-Lipska; Cord Drögemüller; Elisabeth Dietschi; Gaudenz Dolf; Bernd Tellhelm; Johann Lang; Katriina Tiira; Hannes Lohi; Tosso Leeb

We describe a mild form of disproportionate dwarfism in Labrador Retrievers, which is not associated with any obvious health problems such as secondary arthrosis. We designate this phenotype as skeletal dysplasia 2 (SD2). It is inherited as a monogenic autosomal recessive trait with incomplete penetrance primarily in working lines of the Labrador Retriever breed. Using 23 cases and 37 controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 4.44 Mb interval on chromosome 12. We re-sequenced the genome of one affected dog at 30x coverage and detected 92 non-synonymous variants in the critical interval. Only two of these variants, located in the lymphotoxin A (LTA) and collagen alpha-2(XI) chain gene (COL11A2), respectively, were perfectly associated with the trait. Previously described COL11A2 variants in humans or mice lead to skeletal dysplasias and/or deafness. The dog variant associated with disproportionate dwarfism, COL11A2:c.143G>C or p.R48P, probably has only a minor effect on collagen XI function, which might explain the comparatively mild phenotype seen in our study. The identification of this candidate causative mutation thus widens the known phenotypic spectrum of COL11A2 mutations. We speculate that non-pathogenic COL11A2 variants might even contribute to the heritable variation in height.


PLOS Genetics | 2017

A de novo variant in the ASPRV1 gene in a dog with ichthyosis

Anina Bauer; Dominik Pawel Waluk; Arnaud Galichet; Katrin Timm; Vidhya Jagannathan; Beyza S. Sayar; Dominique Judith Wiener; Elisabeth Dietschi; Eliane J. Müller; Petra Roosje; Monika Maria Welle; Tosso Leeb

Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding “aspartic peptidase, retroviral-like 1”, which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Generalized myoclonic epilepsy with photosensitivity in juvenile dogs caused by a defective DIRAS family GTPase 1

Franziska Wielaender; Riika Sarviaho; Fiona M. K. James; Marjo K. Hytönen; Miguel A. Cortez; Gerhard Kluger; Lotta L. E. Koskinen; Meharji Arumilli; Marion Kornberg; Andrea Bathen-Noethen; Andrea Tipold; Kai Rentmeister; Sofie Bhatti; Velia Hülsmeyer; Irene C. Boettcher; Carina Tästensen; Thomas Flegel; Elisabeth Dietschi; Tosso Leeb; Kaspar Matiasek; Andrea Fischer; Hannes Lohi

Significance Comprehensive clinical, neurological, and genetic examinations characterized a generalized myoclonic epilepsy syndrome with photosensitivity in young Rhodesian Ridgeback dogs. The average age of onset of seizures was 6 mo. Genetic analyses revealed a defective DIRAS family GTPase 1 (DIRAS1) gene and protein. DIRAS1 is widely expressed in the brain and has been suggested to regulate acetylcholine release and play a role in neurodevelopment. This study reveals a candidate gene for human myoclonic epilepsies, and a translational model to further elucidate the role of DIRAS1 in neurotransmission and neurodevelopment, and its modulation as a therapeutic option in common epilepsy. The clinical and electroencephalographic features of a canine generalized myoclonic epilepsy with photosensitivity and onset in young Rhodesian Ridgeback dogs (6 wk to 18 mo) are described. A fully penetrant recessive 4-bp deletion was identified in the DIRAS family GTPase 1 (DIRAS1) gene with an altered expression pattern of DIRAS1 protein in the affected brain. This neuronal DIRAS1 gene with a proposed role in cholinergic transmission provides not only a candidate for human myoclonic epilepsy but also insights into the disease etiology, while establishing a spontaneous model for future intervention studies and functional characterization.


Molecular Genetics and Metabolism | 2017

Neuronal ceroid lipofuscinosis (NCL) is caused by the entire deletion of CLN8 in the Alpenländische Dachsbracke dog.

M Hirz; Michaela Drögemüller; A. Schänzer; Vidhya Jagannathan; Elisabeth Dietschi; H H Goebel; W Hecht; S Laubner; Martin J. Schmidt; Frank Steffen; Monika Hilbe; K Köhler; Cord Drögemüller; Christiane Herden

Neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage diseases that have been described in a variety of dog breeds, where they are caused by different mutations in different genes. However, the causative gene defect in the breed Alpenländische Dachsbracke remained unknown so far. Here we present two confirmed cases of NCL in Alpenländische Dachsbracke dogs from different litters of the same sire with a different dam harboring the same underlying novel mutation in the CLN8 gene. Case 1, a 2-year-old male Alpenländische Dachsbracke was presented with neurological signs including disorientation, character changes including anxiety states and aggressiveness, sudden blindness and reduction of food intake. Magnetic resonance imaging (MRI) scans showed cerebral atrophy with dilation of all cerebral ventricles, thinning of the intermediate mass of the thalamus and widening of the cerebral sulci. Postmortem examination of the central nervous system (CNS) showed neuronal loss in the cerebral cortex, cerebellum and spinal cord with massive intracellular deposits of ceroid pigment. Additional ceroid-lipofuscin deposits were observed in the enteric nervous system and in macrophages within spleen, lymph nodes and lung. Ultrastructural analyses confirmed NCL with the presence of osmiophilic membrane bounded lamellar-like structures. Case 2, a 1,5-year old female Alpenländische Dachsbracke was presented with progressive generalized forebrain disease including mental changes such as fearful reactions to various kinds of external stimuli and disorientation. The dog also displayed seizures, absence of menace reactions and negative cotton-ball test with normal pupillary light reactions. The clinical and post mortem examination yielded similar results in the brain as in Case 1. Whole genome sequencing of Case 1 and PCR results of both cases revealed a homozygous deletion encompassing the entire CLN8 gene as the most likely causative mutation for the NCL form observed in both cases. The deletion follows recessive inheritance since the dam and a healthy male littermate of Case 1 were tested as heterozygous carriers. This is the first detailed description of CLN8 gene associated NCL in Alpenländische Dachsbracke dogs and thus provides a novel canine CLN8 model for this lysosomal storage disease. The presence of ceroid lipofuscin in extracerebral tissues may help to confirm the diagnosis of NCL in vivo, especially in new dog breeds where the underlying mutation is not known.


G3: Genes, Genomes, Genetics | 2017

A Missense Variant in KCNJ10 in Belgian Shepherd Dogs Affected by Spongy Degeneration with Cerebellar Ataxia (SDCA1).

N. Mauri; Miriam Kleiter; Michael Leschnik; Sandra Högler; Elisabeth Dietschi; Michaela Wiedmer; Joëlle Dietrich; Diana Henke; Frank Steffen; Simone Schuller; Corinne Gurtner; Nadine Stokar-Regenscheit; O'Toole D; Thomas Bilzer; Christiane Herden; Anna Oevermann; Jagannathan; Tosso Leeb

Spongy degeneration with cerebellar ataxia (SDCA) is a severe neurodegenerative disease with monogenic autosomal recessive inheritance in Malinois dogs, one of the four varieties of the Belgian Shepherd breed. We performed a genetic investigation in six families and seven isolated cases of Malinois dogs with signs of cerebellar dysfunction. Linkage analysis revealed an unexpected genetic heterogeneity within the studied cases. The affected dogs from four families and one isolated case shared a ∼1.4 Mb common homozygous haplotype segment on chromosome 38. Whole genome sequence analysis of three affected and 140 control dogs revealed a missense variant in the KCNJ10 gene encoding a potassium channel (c.986T>C; p.Leu329Pro). Pathogenic variants in KCNJ10 were reported previously in humans, mice, and dogs with neurological phenotypes. Therefore, we consider KCNJ10:c.986T>C the most likely candidate causative variant for one subtype of SDCA in Malinois dogs, which we propose to term spongy degeneration with cerebellar ataxia 1 (SDCA1). However, our study also comprised samples from 12 Malinois dogs with cerebellar dysfunction which were not homozygous for this variant, suggesting a different genetic basis in these dogs. A retrospective detailed clinical and histopathological analysis revealed subtle neuropathological differences with respect to SDCA1-affected dogs. Thus, our study highlights the genetic and phenotypic complexity underlying cerebellar dysfunction in Malinois dogs and provides the basis for a genetic test to eradicate one specific neurodegenerative disease from the breeding population. These dogs represent an animal model for the human EAST syndrome.


PLOS ONE | 2015

A Multi-Breed Genome-Wide Association Analysis for Canine Hypothyroidism Identifies a Shared Major Risk Locus on CFA12

Matteo Bianchi; Stina S. Dahlgren; Jonathan Massey; Elisabeth Dietschi; Marcin Kierczak; Martine Lund-Ziener; Katarina Sundberg; Stein Istre Thoresen; Olle Kämpe; Göran Andersson; William Ollier; Åke Hedhammar; Tosso Leeb; Kerstin Lindblad-Toh; L. J. Kennedy; Frode Lingaas; Gerli Rosengren Pielberg

Hypothyroidism is a complex clinical condition found in both humans and dogs, thought to be caused by a combination of genetic and environmental factors. In this study we present a multi-breed analysis of predisposing genetic risk factors for hypothyroidism in dogs using three high-risk breeds—the Gordon Setter, Hovawart and the Rhodesian Ridgeback. Using a genome-wide association approach and meta-analysis, we identified a major hypothyroidism risk locus shared by these breeds on chromosome 12 (p = 2.1x10-11). Further characterisation of the candidate region revealed a shared ~167 kb risk haplotype (4,915,018–5,081,823 bp), tagged by two SNPs in almost complete linkage disequilibrium. This breed-shared risk haplotype includes three genes (LHFPL5, SRPK1 and SLC26A8) and does not extend to the dog leukocyte antigen (DLA) class II gene cluster located in the vicinity. These three genes have not been identified as candidate genes for hypothyroid disease previously, but have functions that could potentially contribute to the development of the disease. Our results implicate the potential involvement of novel genes and pathways for the development of canine hypothyroidism, raising new possibilities for screening, breeding programmes and treatments in dogs. This study may also contribute to our understanding of the genetic etiology of human hypothyroid disease, which is one of the most common endocrine disorders in humans.


G3: Genes, Genomes, Genetics | 2017

A SINE Insertion in ATP1B2 in Belgian Shepherd Dogs Affected by Spongy Degeneration with Cerebellar Ataxia (SDCA2)

Nico Mauri; Miriam Kleiter; Elisabeth Dietschi; Michael Leschnik; Sandra Högler; Michaela Wiedmer; Joëlle Dietrich; Diana Henke; Frank Steffen; Simone Schuller; Corinne Gurtner; Nadine Stokar-Regenscheit; Donal O’Toole; Thomas Bilzer; Christiane Herden; Anna Oevermann; Vidhya Jagannathan; Tosso Leeb

Spongy degeneration with cerebellar ataxia (SDCA) is a genetically heterogeneous neurodegenerative disorder with autosomal recessive inheritance in Malinois dogs, one of the four varieties of the Belgian Shepherd breed. Using a combined linkage and homozygosity mapping approach we identified an ∼10.6 Mb critical interval on chromosome 5 in a Malinois family with four puppies affected by cerebellar dysfunction. Visual inspection of the 10.6 Mb interval in whole-genome sequencing data from one affected puppy revealed a 227 bp SINE insertion into the ATP1B2 gene encoding the β2 subunit of the Na+/K+-ATPase holoenzyme (ATP1B2:c.130_131insLT796559.1:g.50_276). The SINE insertion caused aberrant RNA splicing. Immunohistochemistry suggested a reduction of ATP1B2 protein expression in the central nervous system of affected puppies. Atp1b2 knockout mice had previously been reported to show clinical and neurohistopathological findings similar to the affected Malinois puppies. Therefore, we consider ATP1B2:c.130_131ins227 the most likely candidate causative variant for a second subtype of SDCA in Malinois dogs, which we propose to term spongy degeneration with cerebellar ataxia subtype 2 (SDCA2). Our study further elucidates the genetic and phenotypic complexity underlying cerebellar dysfunction in Malinois dogs and provides the basis for a genetic test to eradicate one specific neurodegenerative disease from the breeding population in Malinois and the other varieties of the Belgian Shepherd breed. ATP1B2 thus represents another candidate gene for human inherited cerebellar ataxias, and SDCA2-affected Malinois puppies may serve as a naturally occurring animal model for this disorder.


Archive | 1996

Die Hüftgelenksdysplasie im Umfeld von sekundären Einflüssen und ektopischen Ursachen

Peter Schawalder; David Spreng; Elisabeth Dietschi; Gaudenz Dolf; Claude Gaillard

Collaboration


Dive into the Elisabeth Dietschi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannes Lohi

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge