Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Flori is active.

Publication


Featured researches published by Elisabeth Flori.


Journal of Medical Genetics | 2014

Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing

Claire Redin; Bénédicte Gérard; Julia Lauer; Yvan Herenger; Jean Muller; Angélique Quartier; Alice Masurel-Paulet; Marjolaine Willems; Gaetan Lesca; Salima El-Chehadeh; Stéphanie Le Gras; Serge Vicaire; Muriel Philipps; Michael Dumas; Véronique Geoffroy; Claire Feger; Nicolas Haumesser; Yves Alembik; Magalie Barth; Dominique Bonneau; Estelle Colin; Hélène Dollfus; Bérénice Doray; Marie-Ange Delrue; Valérie Drouin-Garraud; Elisabeth Flori; Mélanie Fradin; Christine Francannet; Alice Goldenberg; Serge Lumbroso

Background Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. Methods We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. Results We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients’ clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. Conclusions With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation

Vincent Marion; Corinne Stoetzel; Dominique Schlicht; Nadia Messaddeq; Michael Koch; Elisabeth Flori; Jean Marc Danse; Jean-Louis Mandel; Hélène Dollfus

Bardet-Biedl syndrome (BBS) is an inherited ciliopathy generally associated with severe obesity, but the underlying mechanism remains hypothetical and is generally proposed to be of neuroendocrine origin. In this study, we show that while the proliferating preadipocytes or mature adipocytes are nonciliated in culture, a typical primary cilium is present in differentiating preadipocytes. This transient cilium carries receptors for Wnt and Hedgehog pathways, linking this organelle to previously described regulatory pathways of adipogenesis. We also show that the BBS10 and BBS12 proteins are located within the basal body of this primary cilium and inhibition of their expression impairs ciliogenesis, activates the glycogen synthase kinase 3 pathway, and induces peroxisome proliferator-activated receptor nuclear accumulation, hence favoring adipogenesis. Moreover, adipocytes derived from BBS-patients dermal fibroblasts in culture exhibit higher propensity for fat accumulation when compared to controls. This strongly suggests that a peripheral primary dysfunction of adipogenesis participates to the pathogenesis of obesity in BBS.


Clinical Genetics | 2010

Delineation of 15q13.3 microdeletions

Alice Masurel-Paulet; Joris Andrieux; Patrick Callier; Jean-Marie Cuisset; C Le Caignec; Muriel Holder; Christel Thauvin-Robinet; B Doray; Elisabeth Flori; Mp Alex-Cordier; Mylène Beri; Odile Boute; Bruno Delobel; A Dieux; Louis Vallée; Sylvie Jaillard; Sylvie Odent; Bertrand Isidor; Claire Beneteau; J Vigneron; Frédéric Bilan; Brigitte Gilbert-Dussardier; Christèle Dubourg; Audrey Labalme; C Bidon; A Gautier; P Pernes; Jm Pinoit; Frédéric Huet; Francine Mugneret

Masurel‐Paulet A, Andrieux J, Callier P, Cuisset JM, Le Caignec C, Holder M, Thauvin‐Robinet C, Doray B, Flori E, Alex‐Cordier MP, Beri M, Boute O, Delobel B, Dieux A, Vallee L, Jaillard S, Odent S, Isidor B, Beneteau C, Vigneron J, Bilan F, Gilbert‐Dussardier B, Dubourg C, Labalme A, Gautier A, Pernes P, Bidon C, Pinoit JM, Huet F, Mugneret F, Aral B, Jonveaux P, Sanlaville D, Faivre L. Delineation of 15q13.3 microdeletions.


Journal of Medical Genetics | 2010

Microdeletion at chromosome 4q21 defines a new emerging syndrome with marked growth restriction, mental retardation and absent or severely delayed speech

Céline Bonnet; Joris Andrieux; Mylène Béri-Dexheimer; Bruno Leheup; Odile Boute; S Manouvrier; Bruno Delobel; Henri Copin; Aline Receveur; Michèle Mathieu; G Thiriez; C Le Caignec; A David; Mc De Blois; Valérie Malan; Anne Philippe; Valérie Cormier-Daire; Laurence Colleaux; Elisabeth Flori; H Dollfus; V Pelletier; Christel Thauvin-Robinet; Alice Masurel-Paulet; L. Faivre; Marc Tardieu; Nadia Bahi-Buisson; Patrick Callier; Francine Mugneret; Philippe Jonveaux; D. Sanlaville

Background Genome-wide screening of large patient cohorts with mental retardation using microarray-based comparative genomic hybridisation (array-CGH) has recently led to identification several novel microdeletion and microduplication syndromes. Methods Owing to the national array-CGH network funded by the French Ministry of Health, shared information about patients with rare disease helped to define critical intervals and evaluate their gene content, and finally determine the phenotypic consequences of genomic array findings. Results In this study, nine unrelated patients with overlapping de novo interstitial microdeletions involving 4q21 are reported. Several major features are common to all patients, including neonatal muscular hypotonia, severe psychomotor retardation, marked progressive growth restriction, distinctive facial features and absent or severely delayed speech. The boundaries and the sizes of the nine deletions are different, but an overlapping region of 1.37u2005Mb is defined; this region contains five RefSeq genes: PRKG2, RASGEF1B, HNRNPD, HNRPDL and ENOPH1. Discussion Adding new individuals with similar clinical features and 4q21 deletion allowed us to reduce the critical genomic region encompassing two genes, PRKG2 and RASGEF1B. PRKG2 encodes cGMP-dependent protein kinase type II, which is expressed in brain and in cartilage. Information from genetically modified animal models is pertinent to the clinical phenotype. RASGEF1B is a guanine nucleotide exchange factor for Ras family proteins, and several members have been reported as key regulators of actin and microtubule dynamics during both dendrite and spine structural plasticity. Conclusion Clinical and molecular delineation of 4q21 deletion supports a novel microdeletion syndrome and suggests a major contribution of PRKG2 and RASGEF1B haploinsufficiency to the core phenotype.


American Journal of Medical Genetics Part A | 2012

Molecular Characterization of 1q44 Microdeletion in 11 Patients Reveals Three Candidate Genes for Intellectual Disability and Seizures

Gaelle Thierry; Claire Beneteau; Olivier Pichon; Elisabeth Flori; Bertrand Isidor; Françoise Popelard; Marie-Ange Delrue; Laetitia Duboscq-Bidot; Ann-Charlotte Thuresson; Bregje W.M. van Bon; Dorothée Cailley; Caroline Rooryck; Agathe Paubel; Corinne Metay; Anne Dusser; Laurent Pasquier; Mylène Beri; Céline Bonnet; Sylvie Jaillard; Christèle Dubourg; Bassim Tou; M. P. Quere; Cecilia Soussi-Zander; Annick Toutain; Didier Lacombe; Benoit Arveiler; Bert B.A. de Vries; Philippe Jonveaux; Albert David; Cédric Le Caignec

Patients with a submicroscopic deletion at 1q43q44 present with intellectual disability (ID), microcephaly, craniofacial anomalies, seizures, limb anomalies, and corpus callosum abnormalities. However, the precise relationship between most of deleted genes and the clinical features in these patients still remains unclear. We studied 11 unrelated patients with 1q44 microdeletion. We showed that the deletions occurred de novo in all patients for whom both parents DNA was available (10/11). All patients presented with moderate to severe ID, seizures and non‐specific craniofacial anomalies. By oligoarray‐based comparative genomic hybridization (aCGH) covering the 1q44 region at a high resolution, we obtained a critical deleted region containing two coding genes—HNRNPU and FAM36A—and one non‐coding gene—NCRNA00201. All three genes were expressed in different normal human tissues, including in human brain, with highest expression levels in the cerebellum. Mutational screening of the HNRNPU and FAM36A genes in 191 patients with unexplained isolated ID did not reveal any deleterious mutations while the NCRNA00201 non‐coding gene was not analyzed. Nine of the 11 patients did not present with microcephaly or corpus callosum abnormalities and carried a small deletion containing HNRNPU, FAM36A, and NCRNA00201 but not AKT3 and ZNF238, two centromeric genes. These results suggest that HNRNPU, FAM36A, and NCRNA00201 are not major genes for microcephaly and corpus callosum abnormalities but are good candidates for ID and seizures.


Clinical Genetics | 2011

Osteosclerotic bone dysplasia in siblings with a Fam20C mutation

M Fradin; Corinne Stoetzel; Jean Muller; M Koob; D Christmann; C Debry; M Kohler; M Isnard; D Astruc; P Desprez; C Zorres; Elisabeth Flori; Hélène Dollfus; Bérénice Doray

Fradin M, Stoetzel C, Muller J, Koob M, Christmann D, Debry C, Kohler M, Isnard M, Astruc D, Desprez P, Zorres C, Flori E, Dollfus H, Doray B. Osteosclerotic bone dysplasia in siblings with a Fam20C mutation.


European Journal of Human Genetics | 2005

Trisomy 7 mosaicism, maternal uniparental heterodisomy 7 and Hirschsprung's disease in a child with Silver–Russell syndrome

Elisabeth Flori; Emmanuelle Girodon; Brigitte Samama; François Becmeur; Brigitte Viville; Françoise Girard-Lemaire; Bérénice Doray; Caroline Schluth; Luc Marcellin; Nelly Boehm; Michel Goossens; Veronique Pingault

Prenatal trisomy 7 is usually a cell culture artifact in amniocytes with normal diploid karyotype at birth and normal fetal outcome. In the same way, true prenatal trisomy 7 mosaicism usually results in a normal child except when trisomic cells persist after birth or when trisomy rescue leads to maternal uniparental disomy, which is responsible for 5.5–7% of patients with Silver–Russell syndrome (SRS). We report here on the unusual association of SRS and Hirschsprungs disease (HSCR) in a patient with maternal uniparental heterodisomy 7 and trisomy 7 mosaicism in intestine and skin fibroblasts. HSCR may be fortuitous given its frequency, multifactorial inheritance and genetic heterogeneity. However, the presence of the trisomy 7 mosaicism in intestine as well as in skin fibroblasts suggests that SRS and HSCR might possibly be related. Such an association might result from either an increased dosage of a nonimprinted gene due to trisomy 7 mosaicism in skin fibroblasts (leading to SRS) and in intestine (leading to HSCR), or from an overexpression, through genomic imprinting, of maternally expressed imprinted allele(s) in skin fibroblasts and intestine or from a combination of trisomy 7 mosaicism and genomic imprinting. This report suggests that the SRS phenotype observed in maternal uniparental disomy 7 (mUPD(7)) patients might also result from an undetected low level of trisomy 7 mosaicism. In order to validate this hypothesis, we propose to perform a conventional and molecular cytogenetic analysis in different tissues every time mUPD(7) is displayed.


European Journal of Human Genetics | 2016

A French multicenter study of over 700 patients with 22q11 deletions diagnosed using FISH or aCGH

Céline Poirsier; Justine Besseau-Ayasse; Caroline Schluth-Bolard; Jérôme Toutain; Chantal Missirian; Cédric Le Caignec; Anne Bazin; Marie Christine De Blois; Paul Kuentz; Marie Catty; Agnès Choiset; Ghislaine Plessis; Audrey Basinko; Pascaline Letard; Elisabeth Flori; Mélanie Jimenez; Mylène Valduga; Emilie Landais; Hakima Lallaoui; François Cartault; James Lespinasse; Dominique Martin-Coignard; Patrick Callier; Céline Pebrel-Richard; Marie-France Portnoï; Tiffany Busa; Aline Receveur; Florence Amblard; Catherine Yardin; Radu Harbuz

Although 22q11.2 deletion syndrome (22q11.2DS) is the most recurrent human microdeletion syndrome associated with a highly variable phenotype, little is known about the condition’s true incidence and the phenotype at diagnosis. We performed a multicenter, retrospective analysis of postnatally diagnosed patients recruited by members of the Association des Cytogénéticiens de Langue Française (the French-Speaking Cytogeneticists Association). Clinical and cytogenetic data on 749 cases diagnosed between 1995 and 2013 were collected by 31 French cytogenetics laboratories. The most frequent reasons for referral of postnatally diagnosed cases were a congenital heart defect (CHD, 48.6%), facial dysmorphism (49.7%) and developmental delay (40.7%). Since 2007 (the year in which array comparative genomic hybridization (aCGH) was introduced for the routine screening of patients with intellectual disability), almost all cases have been diagnosed using FISH (96.1%). Only 15 cases (all with an atypical phenotype) were diagnosed with aCGH; the deletion size ranged from 745 to 2904u2009kb. The deletion was inherited in 15.0% of cases and was of maternal origin in 85.5% of the latter. This is the largest yet documented cohort of patients with 22q11.2DS (the most commonly diagnosed microdeletion) from the same population. French cytogenetics laboratories diagnosed at least 108 affected patients (including fetuses) per year from among a national population of ∼66 million. As observed for prenatal diagnoses, CHDs were the most frequently detected malformation in postnatal diagnoses. The most common CHD in postnatal diagnoses was an isolated septal defect.


Clinical Genetics | 2014

Mesoaxial polydactyly is a major feature in Bardet-Biedl syndrome patients with LZTFL1 (BBS17 ) mutations

Ernst J. Schaefer; J. Lauer; M. Durand; V. Pelletier; C. Obringer; A. Claussmann; Jürgen Braun; Claire Redin; C. Mathis; Jean Muller; C. Schmidt-Mutter; Elisabeth Flori; V. Marion; Corinne Stoetzel; Hélène Dollfus

Ciliopathies are heterogeneous disorders sharing different clinical signs due to a defect at the level of the primary cilia/centrosome complex. Postaxial polydactyly is frequently reported in ciliopathies, especially in Bardet–Biedl syndrome (BBS). Clinical features and genetic results observed in a pair of dizygotic twins with BBS are reported. The following manifestations were present: retinitis pigmentosa, bilateral insertional polydactyly, cognitive impairment and renal dysfunction. X‐rays of the hands confirmed the presence of a 4th mesoaxial extra‐digit with Y‐shaped metacarpal bones. The sequencing of LZTFL1 identified a missense mutation (NM_020347.2: p.Leu87Pro; c.260T>C) and a nonsense mutation (p.Glu260*; c.778G>T), establishing a compound heterozygous status for the twins. A major decrease of LZTFL1 transcript and protein was observed in the patients fibroblasts. This is the second report of LZTFL1 mutations in BBS patients confirming LZTFL1 as a BBS gene. Interestingly, the only two families reported in literature thus far with LZTFL1 mutations have in common mesoaxial polydactyly, a very uncommon feature for BBS. This special subtype of polydactyly in BBS patients is easily identified on clinical examination and prompts for priority sequencing of LZTFL1 (BBS17).


European Journal of Human Genetics | 2004

Difficulties of genetic counseling and prenatal diagnosis in a consanguineous couple segregating for the same translocation (14;15) (q11;q13) and at risk for Prader-Willi and Angelman syndromes.

Elisabeth Flori; Valérie Biancalana; Françoise Girard-Lemaire; Romain Favre; Jean Flori; Bérénice Doray; Jean-Louis Mandel

Prader–Willi syndrome (PWS) and Angelman syndrome (AS) are associated with a loss of function of imprinted genes in the 15q11–q13 region mostly due to deletions or uniparental disomies (UPD). These anomalies usually occur de novo with a very low recurrence risk. However, in rare cases, familial translocations are observed, giving rise to a high recurrence risk. We report on the difficulties of genetic counseling and prenatal diagnosis in a family segregating for a translocation (14;15)(q11;q13) where two consanguineous parents carry the same familial translocation in this chromosome 15 imprinting region. Both children of the couple inherited a chromosomal anomaly leading to PWS. However, a paternal 15q11–q13 deletion was responsible for PWS in the first child, whereas prenatal diagnosis demonstrated that PWS was associated with a maternal 15q11–q13 UPD in the fetus. This report demonstrates that both conventional and molecular cytogenetic parental analyses have to be performed when a deletion is responsible for PWS or AS in order not to overlook a familial translocation and to insure reliable diagnosis and genetic counseling.

Collaboration


Dive into the Elisabeth Flori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Muller

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge