Elisabeth Glowatzki
Johns Hopkins University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisabeth Glowatzki.
Nature Neuroscience | 2002
Elisabeth Glowatzki; Paul A. Fuchs
Neurotransmitters are released continuously at ribbon synapses in the retina and cochlea. Notably, a single ribbon synapse of inner hair cells provides the entire input to each cochlear afferent fiber. We investigated hair cell transmitter release in the postnatal rat cochlea by recording excitatory postsynaptic currents (EPSCs) from afferent boutons directly abutting the ribbon synapse. EPSCs were carried by rapidly gating AMPA receptors. EPSCs were clustered in time, indicating the possibility of coordinate release. Amplitude distributions of spontaneous EPSCs were highly skewed, peaking at 0.4 nS and ranging up to 20 times larger. Hair cell depolarization increased EPSC frequency up to 150 Hz without altering the amplitude distribution. We propose that the ribbon synapse operates by multivesicular release, possibly to achieve high-frequency transmission.
Nature | 2007
Nicolas X. Tritsch; Eunyoung Yi; Jonathan E. Gale; Elisabeth Glowatzki; Dwight E. Bergles
Spontaneous activity in the developing auditory system is required for neuronal survival as well as the refinement and maintenance of tonotopic maps in the brain. However, the mechanisms responsible for initiating auditory nerve firing in the absence of sound have not been determined. Here we show that supporting cells in the developing rat cochlea spontaneously release ATP, which causes nearby inner hair cells to depolarize and release glutamate, triggering discrete bursts of action potentials in primary auditory neurons. This endogenous, ATP-mediated signalling synchronizes the output of neighbouring inner hair cells, which may help refine tonotopic maps in the brain. Spontaneous ATP-dependent signalling rapidly subsides after the onset of hearing, thereby preventing this experience-independent activity from interfering with accurate encoding of sound. These data indicate that supporting cells in the organ of Corti initiate electrical activity in auditory nerves before hearing, pointing to an essential role for peripheral, non-sensory cells in the development of central auditory pathways.
Neuron | 2008
Rebecca P. Seal; Omar Akil; Eunyoung Yi; Christopher M. Weber; Lisa Grant; Jong Yoo; Amanda Clause; Karl Kandler; Jeffrey L. Noebels; Elisabeth Glowatzki; Lawrence R. Lustig; Robert H. Edwards
The expression of unconventional vesicular glutamate transporter VGLUT3 by neurons known to release a different classical transmitter has suggested novel roles for signaling by glutamate, but this distribution has raised questions about whether the protein actually contributes to glutamate release. We now report that mice lacking VGLUT3 are profoundly deaf due to the absence of glutamate release from hair cells at the first synapse in the auditory pathway. The early degeneration of some cochlear ganglion neurons in knockout mice also indicates an important developmental role for the glutamate released by hair cells before the onset of hearing. In addition, the mice exhibit primary, generalized epilepsy that is accompanied by remarkably little change in ongoing motor behavior. The glutamate release conferred by expression of VGLUT3 thus has an essential role in both function and development of the auditory pathway, as well as in the control of cortical excitability.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Juan D. Goutman; Elisabeth Glowatzki
At the first synapse in the auditory pathway, the receptor potential of mechanosensory hair cells is converted into a firing pattern in auditory nerve fibers. For the accurate coding of timing and intensity of sound signals, transmitter release at this synapse must occur with the highest precision. To measure directly the transfer characteristics of the hair cell afferent synapse, we implemented simultaneous whole-cell recordings from mammalian inner hair cells (IHCs) and auditory nerve fiber terminals that typically receive input from a single ribbon synapse. During a 1-s IHC depolarization, the synaptic response depressed >90%, representing the main source for adaptation in the auditory nerve. Synaptic depression was slightly affected by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor desensitization; however, it was mostly caused by reduced vesicular release. When the transfer function between transmitter release and Ca2+ influx was tested at constant open probability for Ca2+ channels (potentials >0 mV), a super linear relation was found. This relation is presumed to result from the cooperative binding of three to four Ca2+ ions at the Ca2+ sensor. However, in the physiological range for receptor potentials (−50 to −30 mV), the relation between Ca2+ influx and afferent activity was linear, assuring minimal distortion in the coding of sound intensity. Changes in Ca2+ influx caused an increase in release probability, but not in the average size of multivesicular synaptic events. By varying Ca2+ buffering in the IHC, we further investigate how Ca2+ channel and Ca2+ sensor at this synapse might relate.
Current Opinion in Neurobiology | 2003
Paul A. Fuchs; Elisabeth Glowatzki; Tobias Moser
Mechanosensory hair cells of the cochlea must serve as both transducers and presynaptic terminals, precisely releasing neurotransmitter to encode acoustic signals for the postsynaptic afferent neuron. Remarkably, each inner hair cell serves as the sole input for 10-30 individual afferent neurons, which requires extraordinary precision and reliability from the synaptic ribbons that marshal vesicular release onto each afferent. Recent studies of hair cell membrane capacitance and postsynaptic currents suggest that the synaptic ribbon may operate by simultaneous multi-vesicular release. This mechanism could serve to ensure the accurate timing of transmission, and further challenges our understanding of this synaptic nano-machine.
The Journal of Neuroscience | 2004
Eleonora Katz; Ana Belén Elgoyhen; María Eugenia Gómez-Casati; Marlies Knipper; Douglas E. Vetter; Paul A. Fuchs; Elisabeth Glowatzki
In the mature cochlea, inner hair cells (IHCs) transduce acoustic signals into receptor potentials, communicating to the brain by synaptic contacts with afferent fibers. Before the onset of hearing, a transient efferent innervation is found on IHCs, mediated by a nicotinic cholinergic receptor that may contain both α9 and α10 subunits. Calcium influx through that receptor activates calcium-dependent (SK2-containing) potassium channels. This inhibitory synapse is thought to disappear after the onset of hearing [after postnatal day 12 (P12)]. We documented this developmental transition using whole-cell recordings from IHCs in apical turns of the rat organ of Corti. Acetylcholine elicited ionic currents in 88-100% of IHCs between P3 and P14, but in only 1 of 11 IHCs at P16-P22. Potassium depolarization of efferent terminals caused IPSCs in 67% of IHCs at P3, in 100% at P7-P9, in 93% at P10-P12, but in only 40% at P13-P14 and in none of the IHCs tested between P16 and P22. Earlier work had shown by in situ hybridization that α9 mRNA is expressed in adult IHCs but thatα10 mRNA disappears after the onset of hearing. In the present study, antibodies toα10 and to the associated calcium-dependent (SK2) potassium channel showed a similar developmental loss. The correlated expression of these gene products with functional innervation suggests that Alpha10 and SK2, but not Alpha9, are regulated by synaptic activity. Furthermore, this developmental knock-out of α10, but not α9, supports the hypothesis that functional nicotinic acetylcholine receptors in hair cells are heteromers containing both these subunits.
The Journal of Neuroscience | 2010
Lisa Grant; Eunyoung Yi; Elisabeth Glowatzki
Cochlear inner hair cells (IHCs) convert sounds into receptor potentials and via their ribbon synapses into firing rates in auditory nerve fibers. Multivesicular release at individual IHC ribbon synapses activates AMPA-mediated EPSCs with widely ranging amplitudes. The underlying mechanisms and specific role for multivesicular release in encoding sound are not well understood. Here we characterize the waveforms of individual EPSCs recorded from afferent boutons contacting IHCs and compare their characteristics in immature rats (postnatal days 8–11) and hearing rats (postnatal days 19–21). Two types of EPSC waveforms were found in every recording: monophasic EPSCs, with sharp rising phases and monoexponential decays, and multiphasic EPSCs, exhibiting inflections on rising and decaying phases. Multiphasic EPSCs exhibited slower rise times and smaller amplitudes than monophasic EPSCs. Both types of EPSCs had comparable charge transfers, suggesting that they were activated by the release of similar numbers of vesicles, which for multiphasic EPSCs occurred in a less coordinated manner. On average, a higher proportion of larger, monophasic EPSCs was found in hearing compared to immature rats. In addition, EPSCs became significantly faster with age. The developmental increase in size and speed could improve auditory signaling acuity. Multiphasic EPSCs persisted in hearing animals, in some fibers constituting half of the EPSCs. The proportion of monophasic versus multiphasic EPSCs varied widely across fibers, resulting in marked heterogeneity of amplitude distributions. We propose that the relative contribution of two modes of multivesicular release, generating monophasic and multiphasic EPSCs, may underlie fundamental characteristics of auditory nerve fibers.
Nature | 2009
Catherine J. C. Weisz; Elisabeth Glowatzki; Paul A. Fuchs
The mammalian cochlea is innervated by two classes of sensory neurons. Type I neurons make up 90–95% of the cochlear nerve and contact single inner hair cells to provide acoustic analysis as we know it. In contrast, the far less numerous type II neurons arborize extensively among outer hair cells (OHCs) and supporting cells. Their scarcity and smaller calibre axons have made them the subject of much speculation, but little experimental progress for the past 50 years. Here we record from type II fibres near their terminal arbors under OHCs to show that they receive excitatory glutamatergic synaptic input. The type II peripheral arbor conducts action potentials, but the small and infrequent glutamatergic excitation indicates a requirement for strong acoustic stimulation. Furthermore, we show that type II neurons are excited by ATP. Exogenous ATP depolarized type II neurons, both directly and by evoking glutamatergic synaptic input. These results prove that type II neurons function as cochlear afferents, and can be modulated by ATP. The lesser magnitude of synaptic drive dictates a fundamentally different role in auditory signalling from that of type I afferents.
The Journal of Neuroscience | 2004
Maria I. Lioudyno; Hakim Hiel; Jee Hyun Kong; Eleonora Katz; Erik H. Waldman; Suchitra Parameshwaran-Iyer; Elisabeth Glowatzki; Paul A. Fuchs
Cochlear hair cells are inhibited by cholinergic efferent neurons. The acetylcholine (ACh) receptor of the hair cell is a ligand-gated cation channel through which calcium enters to activate potassium channels and hyperpolarize the cell. It has been proposed that calcium-induced calcium release (CICR) from a near-membrane postsynaptic store supplements this process. Here, we demonstrate expression of type I ryanodine receptors in outer hair cells in the apical turn of the rat cochlea. Consistent with this finding, ryanodine and other store-active compounds alter the amplitude of transient currents produced by synaptic release of ACh, as well as the response of the hair cell to exogenous ACh. Like the sarcoplasmic reticulum of muscle, the “synaptoplasmic” cistern of the hair cell efficiently couples synaptic input to CICR.
The Journal of Neuroscience | 2004
Sonja J. Pyott; Elisabeth Glowatzki; James S. Trimmer; Richard W. Aldrich
Auditory hair cells from nonmammalian vertebrates are electrically tuned to specific sound frequencies primarily by the interactions of voltage-gated calcium channels and calcium-activated potassium (BK) channels colocalized at synaptic active zones. Mammalian inner hair cells are not electrically tuned and, yet, BK channels are also thought to reside at active zones. Using patch-clamp recordings and immunofluorescence, we characterized BK channel expression in mouse inner hair cells. Unexpectedly, these channels have inactivating currents and are clustered near the apex of the cell away from synaptic sites near the base. These results indicate a novel function of BK channels in mammalian inner hair cells and provide a framework for future research.