Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Graf is active.

Publication


Featured researches published by Elisabeth Graf.


The Lancet | 2012

Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study

Anita Rauch; Dagmar Wieczorek; Elisabeth Graf; Thomas Wieland; Sabine Endele; Thomas Schwarzmayr; Beate Albrecht; Deborah Bartholdi; Jasmin Beygo; Nataliya Di Donato; Andreas Dufke; Kirsten Cremer; Maja Hempel; Denise Horn; Juliane Hoyer; Pascal Joset; Albrecht Röpke; Ute Moog; Angelika Riess; Christian Thiel; Andreas Tzschach; Antje Wiesener; Eva Wohlleber; Christiane Zweier; Arif B. Ekici; Alexander M. Zink; Andreas Rump; Christa Meisinger; Harald Grallert; Heinrich Sticht

BACKGROUND The genetic cause of intellectual disability in most patients is unclear because of the absence of morphological clues, information about the position of such genes, and suitable screening methods. Our aim was to identify de-novo variants in individuals with sporadic non-syndromic intellectual disability. METHODS In this study, we enrolled children with intellectual disability and their parents from ten centres in Germany and Switzerland. We compared exome sequences between patients and their parents to identify de-novo variants. 20 children and their parents from the KORA Augsburg Diabetes Family Study were investigated as controls. FINDINGS We enrolled 51 participants from the German Mental Retardation Network. 45 (88%) participants in the case group and 14 (70%) in the control group had de-novo variants. We identified 87 de-novo variants in the case group, with an exomic mutation rate of 1·71 per individual per generation. In the control group we identified 24 de-novo variants, which is 1·2 events per individual per generation. More participants in the case group had loss-of-function variants than in the control group (20/51 vs 2/20; p=0·022), suggesting their contribution to disease development. 16 patients carried de-novo variants in known intellectual disability genes with three recurrently mutated genes (STXBP1, SYNGAP1, and SCN2A). We deemed at least six loss-of-function mutations in six novel genes to be disease causing. We also identified several missense alterations with potential pathogenicity. INTERPRETATION After exclusion of copy-number variants, de-novo point mutations and small indels are associated with severe, sporadic non-syndromic intellectual disability, accounting for 45-55% of patients with high locus heterogeneity. Autosomal recessive inheritance seems to contribute little in the outbred population investigated. The large number of de-novo variants in known intellectual disability genes is only partially attributable to known non-specific phenotypes. Several patients did not meet the expected syndromic manifestation, suggesting a strong bias in present clinical syndrome descriptions. FUNDING German Ministry of Education and Research, European Commission 7th Framework Program, and Swiss National Science Foundation.


American Journal of Human Genetics | 2011

A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease.

Alexander Zimprich; Anna Benet-Pagès; Walter Struhal; Elisabeth Graf; Sebastian H. Eck; Marc N. Offman; Dietrich Haubenberger; Sabine Spielberger; Eva C. Schulte; Peter Lichtner; Shaila C. Rossle; Norman Klopp; Elisabeth Wolf; Klaus Seppi; Walter Pirker; Stefan Presslauer; Brit Mollenhauer; Regina Katzenschlager; Thomas Foki; Christoph Hotzy; Eva Reinthaler; Ashot S. Harutyunyan; Robert Kralovics; Annette Peters; Fritz Zimprich; Thomas Brücke; Werner Poewe; Eduard Auff; Claudia Trenkwalder; Burkhard Rost

To identify rare causal variants in late-onset Parkinson disease (PD), we investigated an Austrian family with 16 affected individuals by exome sequencing. We found a missense mutation, c.1858G>A (p.Asp620Asn), in the VPS35 gene in all seven affected family members who are alive. By screening additional PD cases, we saw the same variant cosegregating with the disease in an autosomal-dominant mode with high but incomplete penetrance in two further families with five and ten affected members, respectively. The mean age of onset in the affected individuals was 53 years. Genotyping showed that the shared haplotype extends across 65 kilobases around VPS35. Screening the entire VPS35 coding sequence in an additional 860 cases and 1014 controls revealed six further nonsynonymous missense variants. Three were only present in cases, two were only present in controls, and one was present in cases and controls. The familial mutation p.Asp620Asn and a further variant, c.1570C>T (p.Arg524Trp), detected in a sporadic PD case were predicted to be damaging by sequence-based and molecular-dynamics analyses. VPS35 is a component of the retromer complex and mediates retrograde transport between endosomes and the trans-Golgi network, and it has recently been found to be involved in Alzheimer disease.


Nature Genetics | 2013

Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension

Felix Beuschlein; Sheerazed Boulkroun; Andrea Osswald; Thomas Wieland; Hang Nguyen Nielsen; Urs Lichtenauer; David Penton; Vivien Rodacker Schack; Laurence Amar; Evelyn Fischer; Anett Walther; Philipp Tauber; Thomas Schwarzmayr; Susanne Diener; Elisabeth Graf; Bruno Allolio; Benoit Samson-Couterie; Arndt Benecke; Marcus Quinkler; Francesco Fallo; Pierre-François Plouin; Franco Mantero; Thomas Meitinger; Paolo Mulatero; Xavier Jeunemaitre; Richard Warth; Bente Vilsen; Maria-Christina Zennaro; Tim M. Strom; Martin Reincke

Primary aldosteronism is the most prevalent form of secondary hypertension. To explore molecular mechanisms of autonomous aldosterone secretion, we performed exome sequencing of aldosterone-producing adenomas (APAs). We identified somatic hotspot mutations in the ATP1A1 (encoding an Na+/K+ ATPase α subunit) and ATP2B3 (encoding a Ca2+ ATPase) genes in three and two of the nine APAs, respectively. These ATPases are expressed in adrenal cells and control sodium, potassium and calcium ion homeostasis. Functional in vitro studies of ATP1A1 mutants showed loss of pump activity and strongly reduced affinity for potassium. Electrophysiological ex vivo studies on primary adrenal adenoma cells provided further evidence for inappropriate depolarization of cells with ATPase alterations. In a collection of 308 APAs, we found 16 (5.2%) somatic mutations in ATP1A1 and 5 (1.6%) in ATP2B3. Mutation-positive cases showed male dominance, increased plasma aldosterone concentrations and lower potassium concentrations compared with mutation-negative cases. In summary, dominant somatic alterations in two members of the ATPase gene family result in autonomous aldosterone secretion.


Nature Neuroscience | 2015

Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia

Axel Freischmidt; Thomas Wieland; Benjamin Richter; Wolfgang P Ruf; Veronique Schaeffer; Kathrin Müller; Nicolai Marroquin; Frida Nordin; Annemarie Hübers; Patrick Weydt; Susana Pinto; Rayomond Press; Stéphanie Millecamps; Nicolas Molko; Emilien Bernard; Claude Desnuelle; Marie-Hélène Soriani; Johannes Dorst; Elisabeth Graf; Ulrika Nordström; Marisa S. Feiler; Stefan Putz; Tobias M. Boeckers; Thomas Meyer; Andrea Sylvia Winkler; Juliane Winkelman; Mamede de Carvalho; Dietmar R. Thal; Markus Otto; Thomas Brännström

Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1 (encoding TANK-binding kinase 1) in 13 fALS pedigrees. No enrichment of LoF mutations was observed in a targeted mutation screen of 1,010 sporadic ALS and 650 additional control individuals. Linkage analysis in four families gave an aggregate LOD score of 4.6. In vitro experiments confirmed the loss of expression of TBK1 LoF mutant alleles, or loss of interaction of the C-terminal TBK1 coiled-coil domain (CCD2) mutants with the TBK1 adaptor protein optineurin, which has been shown to be involved in ALS pathogenesis. We conclude that haploinsufficiency of TBK1 causes ALS and fronto-temporal dementia.


American Journal of Human Genetics | 2012

Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA.

Tobias B. Haack; Penelope Hogarth; Michael C. Kruer; Allison Gregory; Thomas Wieland; Thomas Schwarzmayr; Elisabeth Graf; Lynn Sanford; Esther Meyer; Eleanna Kara; Stephan M. Cuno; Sami I. Harik; Vasuki H. Dandu; Nardo Nardocci; Giovanna Zorzi; Todd Dunaway; Mark A. Tarnopolsky; Steven Skinner; Steven J. Frucht; Era Hanspal; Connie Schrander-Stumpel; Delphine Héron; Cyril Mignot; Barbara Garavaglia; Kailash P. Bhatia; John Hardy; Tim M. Strom; Nathalie Boddaert; Henry Houlden; Manju A. Kurian

Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic disorders characterized by abnormal iron deposition in the basal ganglia. We report that de novo mutations in WDR45, a gene located at Xp11.23 and encoding a beta-propeller scaffold protein with a putative role in autophagy, cause a distinctive NBIA phenotype. The clinical features include early-onset global developmental delay and further neurological deterioration (parkinsonism, dystonia, and dementia developing by early adulthood). Brain MRI revealed evidence of iron deposition in the substantia nigra and globus pallidus. Males and females are phenotypically similar, an observation that might be explained by somatic mosaicism in surviving males and germline or somatic mutations in females, as well as skewing of X chromosome inactivation. This clinically recognizable disorder is among the more common forms of NBIA, and we suggest that it be named accordingly as beta-propeller protein-associated neurodegeneration.


Circulation | 2013

Calmodulin Mutations Associated With Recurrent Cardiac Arrest in Infants

Lia Crotti; Christopher N. Johnson; Elisabeth Graf; Gaetano M. De Ferrari; Bettina F. Cuneo; Marc Ovadia; John Papagiannis; Michael D. Feldkamp; Subodh Rathi; Jennifer D. Kunic; Matteo Pedrazzini; Thomas Wieland; Peter Lichtner; Britt M. Beckmann; Travis Clark; Christian M. Shaffer; D. Woodrow Benson; Stefan Kääb; Thomas Meitinger; Tim M. Strom; Walter J. Chazin; Peter J. Schwartz; Alfred L. George

Background— Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on 2 unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. Methods and Results— We ascertained 2 unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The 2 parent-child trios were investigated with the use of exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in 2 genes encoding calmodulin. We discovered 3 heterozygous de novo mutations in either CALM1 or CALM2, 2 of the 3 human genes encoding calmodulin, in the 2 probands and in 2 additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several-fold reductions in calcium binding affinity. Conclusions— Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart, affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy.


Nature Genetics | 2015

Mutations in the deubiquitinase gene USP8 cause Cushing's disease

Martin Reincke; Silviu Sbiera; Akira Hayakawa; Marily Theodoropoulou; Andrea Osswald; Felix Beuschlein; Thomas Meitinger; Emi Mizuno-Yamasaki; Kohei Kawaguchi; Yasushi Saeki; Keiji Tanaka; Thomas Wieland; Elisabeth Graf; Wolfgang Saeger; Cristina L. Ronchi; Bruno Allolio; Michael Buchfelder; Tim M. Strom; Martin Fassnacht; Masayuki Komada

Cushings disease is caused by corticotroph adenomas of the pituitary. To explore the molecular mechanisms of endocrine autonomy in these tumors, we performed exome sequencing of 10 corticotroph adenomas. We found somatic mutations in the USP8 deubiquitinase gene in 4 of 10 adenomas. The mutations clustered in the 14-3-3 protein binding motif and enhanced the proteolytic cleavage and catalytic activity of USP8. Cleavage of USP8 led to increased deubiqutination of the EGF receptor, impairing its downregulation and sustaining EGF signaling. USP8 mutants enhanced promoter activity of the gene encoding proopiomelanocortin. In summary, our data show that dominant mutations in USP8 cause Cushings disease via activation of EGF receptor signaling.


Human Molecular Genetics | 2012

Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy

Juliane Winkelmann; Ling Lin; Barbara Schormair; Birgitte Rahbek Kornum; Juliette Faraco; Giuseppe Plazzi; Atle Melberg; Ferdinando Cornelio; Alexander E. Urban; Fabio Pizza; Francesca Poli; Fabian Grubert; Thomas Wieland; Elisabeth Graf; Joachim Hallmayer; Tim M. Strom; Emmanuel Mignot

Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT1 as the only gene with mutations found in all five affected individuals. Sanger sequencing confirmed the de novo mutation p.Ala570Val in one family, and showed co-segregation of p.Val606Phe and p.Ala570Val, with the ADCA-DN phenotype, in two other kindreds. An additional ADCA-DN kindred with a p.GLY605Ala mutation was subsequently identified. Narcolepsy and deafness were the first symptoms to appear in all pedigrees, followed by ataxia. DNMT1 is a widely expressed DNA methyltransferase maintaining methylation patterns in development, and mediating transcriptional repression by direct binding to HDAC2. It is also highly expressed in immune cells and required for the differentiation of CD4+ into T regulatory cells. Mutations in exon 20 of this gene were recently reported to cause hereditary sensory neuropathy with dementia and hearing loss (HSAN1). Our mutations are all located in exon 21 and in very close spatial proximity, suggesting distinct phenotypes depending on mutation location within this gene.


Nature | 2013

Dysfunctional nitric oxide signalling increases risk of myocardial infarction

Jeanette Erdmann; Klaus Stark; Ulrike Esslinger; Philipp Moritz Rumpf; Doris Koesling; Cor de Wit; Frank J. Kaiser; Diana Braunholz; Anja Medack; Marcus Fischer; Martina E. Zimmermann; Stephanie Tennstedt; Elisabeth Graf; Sebastian H. Eck; Zouhair Aherrahrou; Janja Nahrstaedt; Christina Willenborg; Petra Bruse; Ingrid Brænne; Markus M. Nöthen; Per Hofmann; Peter S. Braund; Evanthia Mergia; Wibke Reinhard; Christof Burgdorf; Stefan Schreiber; Anthony J. Balmforth; Alistair S. Hall; Lars Bertram; Elisabeth Steinhagen-Thiessen

Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.


Hypertension | 2012

KCNJ5 Mutations in European Families With Nonglucocorticoid Remediable Familial Hyperaldosteronism

Paolo Mulatero; Philipp Tauber; Maria-Christina Zennaro; Silvia Monticone; Katharina Lang; Felix Beuschlein; Evelyn Fischer; Davide Tizzani; Anna Pallauf; Andrea Viola; Laurence Amar; Tracy A. Williams; Tim M. Strom; Elisabeth Graf; Sascha Bandulik; David Penton; Pierre-François Plouin; Richard Warth; Bruno Allolio; Xavier Jeunemaitre; Franco Veglio; Martin Reincke

Primary aldosteronism is the most frequent cause of endocrine hypertension. Three forms of familial hyperaldosteronism (FH) have been described, named FH-I to -III. Recently, a mutation of KCNJ5 has been shown to be associated with FH-III, whereas the cause of FH-II is still unknown. In this study we searched for mutations in KCNJ5 in 46 patients from 21 families with FH, in which FH-I was excluded. We identified a new germline G151E mutation in 2 primary aldosteronism–affected subjects from an Italian family and 3 somatic mutations in aldosterone-producing adenomas, T158A described previously as a germline mutation associated with FH-III, and G151R and L168R both described as somatic mutations in aldosterone-producing adenoma. The phenotype of the family with the G151E mutation was remarkably milder compared with the previously described American family, in terms of both clinical and biochemical parameters. Furthermore, patients with somatic KCNJ5 mutations displayed a phenotype indistinguishable from that of sporadic primary aldosteronism. The functional characterization of the effects of the G151E mutation in vitro showed a profound alteration of the channel function, with loss of K+ selectivity, Na+ influx, and membrane depolarization. These alterations have been postulated to be responsible for voltage gate Ca2+ channel activation, increase in cytosolic calcium, and stimulation of aldosterone production and adrenal cell proliferation. In conclusion, we describe herein a new mutation in the KCNJ5 potassium channel associated with FH-III, responsible for marked alterations of channel function but associated with a mild clinical and hormonal phenotype.

Collaboration


Dive into the Elisabeth Graf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes A. Mayr

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Peter Freisinger

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dagmar Wieczorek

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Sperl

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Beate Albrecht

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Georg F. Hoffmann

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Urania Kotzaeridou

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Gertrud Eckstein

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge