Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Hartmann is active.

Publication


Featured researches published by Elisabeth Hartmann.


Nature | 2009

Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase

Thomas R. M. Barends; Elisabeth Hartmann; Julia J. Griese; Thorsten Beitlich; Natalia V. Kirienko; Dmitri A. Ryjenkov; Jochen Reinstein; Robert L. Shoeman; Mark Gomelsky; Ilme Schlichting

The ability to respond to light is crucial for most organisms. BLUF is a recently identified photoreceptor protein domain that senses blue light using a FAD chromophore. BLUF domains are present in various proteins from the Bacteria, Euglenozoa and Fungi. Although structures of single-domain BLUF proteins have been determined, none are available for a BLUF protein containing a functional output domain; the mechanism of light activation in this new class of photoreceptors has thus remained poorly understood. Here we report the biochemical, structural and mechanistic characterization of a full-length, active photoreceptor, BlrP1 (also known as KPN_01598), from Klebsiella pneumoniae. BlrP1 consists of a BLUF sensor domain and a phosphodiesterase EAL output domain which hydrolyses cyclic dimeric GMP (c-di-GMP). This ubiquitous second messenger controls motility, biofilm formation, virulence and antibiotic resistance in the Bacteria. Crystal structures of BlrP1 complexed with its substrate and metal ions involved in catalysis or in enzyme inhibition provide a detailed understanding of the mechanism of the EAL-domain c-di-GMP phosphodiesterases. These structures also sketch out a path of light activation of the phosphodiesterase output activity. Photon absorption by the BLUF domain of one subunit of the antiparallel BlrP1 homodimer activates the EAL domain of the second subunit through allosteric communication transmitted through conserved domain–domain interfaces.


Biophysical Journal | 2003

Crystal Structures and Molecular Mechanism of a Light−Induced Signaling Switch: The Phot−LOV1 Domain from Chlamydomonas reinhardtii

Roman Fedorov; Ilme Schlichting; Elisabeth Hartmann; Tatjana Domratcheva; Markus Fuhrmann; Peter Hegemann

Phot proteins (phototropins and homologs) are blue-light photoreceptors that control mechanical processes like phototropism, chloroplast relocation, or guard-cell opening in plants. Phot receptors consist of two flavin mononucleotide (FMN)-binding light, oxygen, or voltage (LOV) domains and a C-terminal serine/threonine kinase domain. We determined crystal structures of the LOV1 domain of Phot1 from the green alga Chlamydomonas reinhardtii in the dark and illuminated state to 1.9 A and 2.8 A resolution, respectively. The structure resembles that of LOV2 from Adiantum (Crosson, S. and K. Moffat. 2001. PROC: Natl. Acad. Sci. USA. 98:2995-3000). In the resting dark state of LOV1, the reactive Cys-57 is present in two conformations. Blue-light absorption causes formation of a proposed active signaling state that is characterized by a covalent bond between the flavin C4a and the thiol of Cys-57. There are differences around the FMN chromophore but no large overall conformational changes. Quantum chemical calculations based on the crystal structures revealed the electronic distribution in the active site during the photocycle. The results suggest trajectories for electrons, protons, and the active site cysteine and offer an interpretation of the reaction mechanism.


Science | 2015

Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation

Thomas R. M. Barends; Lutz Foucar; Albert Ardevol; Karol Nass; Andrew Aquila; Sabine Botha; R. Bruce Doak; Konstantin Falahati; Elisabeth Hartmann; M. Hilpert; Marcel Heinz; Matthias C. Hoffmann; Jürgen Köfinger; Jason E. Koglin; Gabriela Kovácsová; Mengning Liang; Despina Milathianaki; Henrik T. Lemke; Jochen Reinstein; C.M. Roome; Robert L. Shoeman; Garth J. Williams; Irene Burghardt; Gerhard Hummer; Sébastien Boutet; Ilme Schlichting

Observing ultrafast myoglobin dynamics The oxygen-storage protein myoglobin was the first to have its three-dimensional structure determined and remains a workhorse for understanding how protein structure relates to function. Barends et al. used x-ray free-electron lasers with femtosecond short pulses to directly observe motions that occur within half a picosecond of CO dissociation (see the Perspective by Neutze). Combining the experiments with simulations shows that ultrafast motions of the heme couple to subpicosecond protein motions, which in turn couple to large-scale motions. Science, this issue p. 445, see also p. 381 Time-resolved crystallography at an x-ray laser reveals ultrafast structural changes in myoglobin upon ligand dissociation. [Also see Perspective by Neutze] The hemoprotein myoglobin is a model system for the study of protein dynamics. We used time-resolved serial femtosecond crystallography at an x-ray free-electron laser to resolve the ultrafast structural changes in the carbonmonoxy myoglobin complex upon photolysis of the Fe-CO bond. Structural changes appear throughout the protein within 500 femtoseconds, with the C, F, and H helices moving away from the heme cofactor and the E and A helices moving toward it. These collective movements are predicted by hybrid quantum mechanics/molecular mechanics simulations. Together with the observed oscillations of residues contacting the heme, our calculations support the prediction that an immediate collective response of the protein occurs upon ligand dissociation, as a result of heme vibrational modes coupling to global modes of the protein.


Journal of Synchrotron Radiation | 2015

Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams

Karol Nass; Lutz Foucar; Thomas R. M. Barends; Elisabeth Hartmann; Sabine Botha; Robert L. Shoeman; R. Bruce Doak; Roberto Alonso-Mori; Andrew Aquila; Sasa Bajt; Anton Barty; Richard Bean; Kenneth R. Beyerlein; Maike Bublitz; Nikolaj D. Drachmann; Jonas Lindholt Gregersen; H. Olof Jönsson; Wolfgang Kabsch; Stephan Kassemeyer; Jason E. Koglin; Michael Krumrey; Daniel Mattle; Marc Messerschmidt; Poul Nissen; Linda Reinhard; Oleg Sitsel; Dimosthenis Sokaras; Garth J. Williams; Stefan P. Hau-Riege; Nicusor Timneanu

Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.


Optics Express | 2011

Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering

Chun Hong Yoon; Peter Schwander; Chantal Abergel; Inger Andersson; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; A. Barty; Michael J. Bogan; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Jean-Michel Claverie; Nicola Coppola; Daniel P. DePonte; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; J. Hajdu; Christina Y. Hampton; Andreas Hartmann; Elisabeth Hartmann; Robert Hartmann; Günter Hauser; Helmut Hirsemann

Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.


Optics Express | 2012

Femtosecond free-electron laser x-ray diffraction data sets for algorithm development.

Stephan Kassemeyer; Jan Steinbrener; Lukas Lomb; Elisabeth Hartmann; Andrew Aquila; Anton Barty; Andrew V. Martin; Christina Y. Hampton; Sasa Bajt; Miriam Barthelmess; Thomas R. M. Barends; Christoph Bostedt; Mario Bott; John D. Bozek; Nicola Coppola; Max J. Cryle; Daniel P. DePonte; R. Bruce Doak; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Helmut Hirsemann; André Hömke; Peter Holl

We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.


Journal of Molecular Biology | 2014

Characterization of elements involved in allosteric light regulation of phosphodiesterase activity by comparison of different functional BlrP1 states.

Andreas Winkler; Anikó Udvarhelyi; Elisabeth Hartmann; Jochen Reinstein; Andreas Menzel; Robert L. Shoeman; Ilme Schlichting

Bacteria have evolved dedicated signaling mechanisms that enable the integration of a range of environmental stimuli and the accordant modulation of metabolic pathways. One central signaling molecule in bacteria is the second messenger cyclic dimeric GMP (c-di-GMP). Complex regulatory mechanisms for modulating c-di-GMP concentrations have evolved, in line with its importance for maintaining bacterial fitness under changing environmental conditions. One interesting example in this context is the blue-light-regulated phosphodiesterase 1 (BlrP1) of Klebsiella pneumoniae. This covalently linked system of a sensor of blue light using FAD (BLUF) and an EAL phosphodiesterase domain orchestrates the light-dependent down-regulation of c-di-GMP levels. To reveal details of light-induced structural changes involved in EAL activity regulation, we extended previous crystallographic studies with hydrogen–deuterium exchange experiments and small-angle X-ray scattering analysis of different functional BlrP1 states. The combination of hydrogen–deuterium exchange and small-angle X-ray scattering allows the integration of local and global structural changes and provides an improved understanding of light signaling via an allosteric communication pathway between the BLUF and EAL domains. This model is supported by results from a mutational analysis of the EAL dimerization region and the analysis of metal-coordination effects of the EAL active site on the dark-state recovery kinetics of the BLUF domain. In combination with structural information from other EAL domains, the observed bidirectional communication points to a general mechanism of EAL activity regulation and suggests that a similar allosteric coupling is maintained in catalytically inactive EAL domains that retain a regulatory function.


Scientific Reports | 2016

Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry.

Tatiana Domratcheva; Elisabeth Hartmann; Ilme Schlichting; Tilman Kottke

BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm−1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm−1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein.


Acta Crystallographica Section D-biological Crystallography | 2013

Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

Thomas R. M. Barends; Richard Brosi; Andrea Steinmetz; Anna Scherer; Elisabeth Hartmann; Jessica Eschenbach; Thorsten Lorenz; Ralf Seidel; Robert L. Shoeman; Sabine Zimmermann; Robert Bittl; Ilme Schlichting; Jochen Reinstein

The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed.


Proceedings of SPIE | 2011

Single particle imaging with soft X-rays at the linac coherent light source

Andrew V. Martin; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Thomas R. M. Barends; Miriam Barthelmess; Anton Barty; W. Henry Benner; Christoph Bostedt; John D. Bozek; Phillip Bucksbaum; Carl Caleman; Nicola Coppola; Daniel P. DePonte; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; George R. Farquar; Holger Fleckenstein; Lutz Foucar; Matthias Frank; Lars Gumprecht; Christina Y. Hampton; Max F. Hantke; Andreas Hartmann; Elisabeth Hartmann; Robert Hartmann; Stephan P. Hau-Riege; G. Hauser; Peter Holl

Results of coherent diffractive imaging experiments performed with soft X-rays (1-2 keV) at the Linac Coherent Light Source are presented. Both organic and inorganic nano-sized objects were injected into the XFEL beam as an aerosol focused with an aerodynamic lens. The high intensity and femtosecond duration of X-ray pulses produced by the Linac Coherent Light Source allow structural information to be recorded by X-ray diffraction before the particle is destroyed. Images were formed by using iterative methods to phase single shot diffraction patterns. Strategies for improving the reconstruction methods have been developed. This technique opens up exciting opportunities for biological imaging, allowing structure determination without freezing, staining or crystallization.

Collaboration


Dive into the Elisabeth Hartmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge