Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth I. Wallner is active.

Publication


Featured researches published by Elisabeth I. Wallner.


Experimental Biology and Medicine | 2008

Diabetic Nephropathy : Mechanisms of Renal Disease Progression

Yashpal S. Kanwar; Jun Wada; Lin Sun; Ping Xie; Elisabeth I. Wallner; Sheldon Chen; Sumant S. Chugh; Farhad R. Danesh

Diabetic nephropathy is characterized by excessive amassing of extracellular matrix (ECM) with thickening of glomerular and tubular basement membranes and increased amount of mesangial matrix, which ultimately progress to glomerulosclerosis and tubulo-interstitial fibrosis. In view of this outcome, it would mean that all the kidney cellular elements, i.e., glomerular endothelia, mesangial cells, podocytes, and tubular epithelia, are targets of hyperglycemic injury. Conceivably, high glucose activates various pathways via similar mechanisms in different cell types of the kidney except for minor exceptions that are related to the selective expression of a given molecule in a particular renal compartment. To begin with, there is an obligatory excessive channeling of glucose intermediaries into various metabolic pathways with generation of advanced glycation products (AGEs), activation of protein kinase C (PKC), increased expression of transforming growth factor-β (TGF-β), GTP-binding proteins, and generation of reactive oxygen species (ROS). The ROS seem to be the common denominator in various pathways and are central to the pathogenesis of hyperglycemic injury. In addition, there are marked alterations in intraglomerular hemodynamics, i.e., hyperfiltration, and this along with metabolic derangements adversely compounds the hyperglycemia-induced injury. Here, the information compiled under various subtitles of this article is derived from an enormous amount of data summarized in several excellent literature reviews, and thus their further reading is suggested to gain in-depth knowledge of each of the subject matter.


Journal of Clinical Investigation | 1997

Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin.

Jun Wada; Kosuke Ota; Anil Kumar; Elisabeth I. Wallner; Yashpal S. Kanwar

Galectin-9, a beta-galactoside binding lectin, has recently been isolated from murine embryonic kidney. In this study, its biological functions and expression in embryonic, newborn, and adult mice tissues were investigated. By Northern blot analyses, it was found widely distributed and its expression was developmentally regulated. In situ hybridization studies revealed an accentuated expression of galectin-9 in liver and thymus of embryonic mice. In postnatal mice, antigalectin-9 immunoreactivity was observed in various tissues, including thymic epithelial cells. The high expression of galectin-9 in the thymus led us to investigate its role in the clonal deletion of thymocytes. Fusion proteins were generated, which retained lactose-binding activity like the endogenous galectin-9. Galectin-9, at 2.5 microM concentration, induced apoptosis in approximately 30% of the thymocytes, as assessed by terminal deoxytransferase-mediated dUTP nick end labeling method. The apoptotic effect was dose dependent and lactose inhibitable. At higher concentrations, it induced homotypic aggregation of the thymocytes. Electron microscopy revealed approximately 60% of the thymocytes undergoing apoptosis in the presence of galectin-9. By immunofluorescence microscopy, some of the thymocytes undergoing apoptosis had plasmalemmal bound galectin-9. Galectin-9 failed to induce apoptosis in hepatocytes. Taken together, these findings indicate that galectin-9, a developmentally regulated lectin, plays a role in thymocyte-epithelial interactions relevant to the biology of the thymus.


Journal of Clinical Investigation | 1996

D-glucose-induced dysmorphogenesis of embryonic kidney.

Yashpal S. Kanwar; Zheng Z. Liu; Anil Kumar; M I Usman; Jun Wada; Elisabeth I. Wallner

An organ culture system was used to study the effect of D-glucose on embryonic kidneys, and to delineate the mechanism(s) relevant to their dysmorphogenesis. Metanephroi were cultured in the presence of 30 mM D-glucose. A notable reduction in the size and population of nephrons was observed. Ureteric bud branches were rudimentary and the acuteness of their tips, the site of nascent nephron formation, was lost. Metanephric mesenchyme was atrophic, had reduced cell replication, and contained numerous apoptotic cells. Competitive reverse transcriptase-PCR analyses and immunoprecipitation studies indicated a decrease in expression of heparan sulfate proteoglycan (perlecan). Status of activated protein-2 was evaluated since its binding motifs are present in the promoter region of the perlecan gene. Decreased binding activity of activated protein-2, related to its phosphorylation, was observed. D-glucose-treated explants also had reduced levels of cellular ATP. Exogenous administration of ATP restored the altered metanephric morphology and reduced [35S]sulfate-incorporated radioactivity associated with perlecan. The data suggest that D-glucose adversely affects the metanephrogenesis by perturbing various cellular phosphorylation events involved in the transcriptional and translational regulation of perlecan. Since perlecan modulates epithelial/mesenchymal interactions, its deficiency may have led to the metanephric dysmorphogenesis and consequential atrophy of the mesenchyme exhibiting accelerated apoptosis.


Journal of Biological Chemistry | 2002

High glucose stimulates synthesis of fibronectin via a novel protein kinase C, Rap1b, and B-Raf signaling pathway

Sun Lin; Atul Sahai; Sumant S. Chugh; Xiaomin Pan; Elisabeth I. Wallner; Farhad R. Danesh; Jon W. Lomasney; Yashpal S. Kanwar

The molecular mechanism(s) by which high glucose induces fibronectin expression via G-protein activation in the kidney are largely unknown. This investigation describes the effect of high glucose (HG) on a small GTP-binding protein, Rap1b, expression and activation, and the relevance of protein kinase C (PKC) and Raf pathways in fibronectin synthesis in cultured renal glomerular mesangial cells (MCs). In vivo experiments revealed a dose-dependent increase in Rap1b expression in glomeruli of diabetic rat kidneys. Similarly, in vitro exposure of MCs to HG led to an up-regulation of Rap1b with concomitant increase in fibronectin (FN) mRNA and protein expression. The up-regulation of Rap1b mRNA was mitigated by the PKC inhibitors, calphostin C, and bisindolymaleimide, while also reducing HG- induced FN expression in non-transfected MCs. Overexpression of Rap1b by transfection with pcDNA 3.1/Rap1b in MCs resulted in the stimulation of FN synthesis; however, the PKC inhibitors had no significant effect in reducing FN expression in Rap1b-transfected MCs. Transfection of Rap1b mutants S17N (Ser → Asn) or T61R (Thr → Arg) in MCs inhibited the HG-induced increased FN synthesis. B-Raf and Raf-1 expression was investigated to assess whether Rap1b effects are mediated via the Raf pathway. B-Raf, and not Raf-1, expression was increased in MCs transfected with Rap1b. HG also caused activation of Rap1b, which was largely unaffected by anti-platelet-derived growth factor (PDGF) antibodies. HG-induced activation of Rap1b was specific, since Rap2b activation and expression of Rap2a and Rap2b were unaffected by HG. These findings indicate that hyperglycemia and HG cause an activation and up-regulation of Rap1b in renal glomeruli and in cultured MCs, which then stimulates FN synthesis. This effect appears to be PKC-dependent and PDGF-independent, but involves B-Raf, suggesting a novel PKC-Rap1b-B-Raf pathway responsible for HG-induced increased mesangial matrix synthesis, a hallmark of diabetic nephropathy.


American Journal of Physiology-renal Physiology | 1999

Role of membrane-type matrix metalloproteinase 1 (MT-1-MMP), MMP-2, and its inhibitor in nephrogenesis

Yashpal S. Kanwar; Kosuke Ota; Qiwei Yang; Jun Wada; Naoki Kashihara; Yufeng Tian; Elisabeth I. Wallner

Extracellular matrix (ECM) proteins, their integrin receptors, and matrix metalloproteinases (MMPs), the ECM-degrading enzymes, are believed to be involved in various biological processes, including embryogenesis. In the present study, we investigated the role of membrane type MMP, MT-1-MMP, an activator pro-MMP-2, in metanephric development. Also, its relationship with MMP-2 and its inhibitor, TIMP-2, was studied. Since mRNAs of MT-1-MMP and MMP-2 are respectively expressed in the ureteric bud epithelia and mesenchyme, they are ideally suited for juxtacrine/paracrine interactions during renal development. Northern blot analyses revealed a single ∼4.5-kb mRNA transcript of MT-1-MMP, and its expression was developmentally regulated. Inclusion of MT-1-MMP antisense oligodeoxynucleotide (ODN) in the culture media induced dysmorphogenetic changes in the embryonic metanephros. MMP-2 antisense ODN also induced similar changes, but they were relatively less; on the other hand TIMP-2 antisense ODN induced a mild increase in the size of explants. Concomitant exposure of MT-1-MMP and MMP-2 antisense ODNs induced profound alterations in the metanephroi. Treatment of TIMP-2 antisense ODN to metanephroi exposed to MT-1-MMP/MMP-2 antisense notably restored the morphology of the explants. Specificity of the MT-1-MMP antisense ODN was reflected in the selective decrease in its mRNA and protein expression. The MT-1-MMP antisense ODN also resulted in a failure in the activation of pro-MMP-2 to MMP-2. These findings suggest that the trimacromolecular complex of MT-1-MMP:MMP-2:TIMP-2 modulates the organogenesis of the metanephros, conceivably by mediating paracrine/juxtacrine epithelial:mesenchymal interactions.Extracellular matrix (ECM) proteins, their integrin receptors, and matrix metalloproteinases (MMPs), the ECM-degrading enzymes, are believed to be involved in various biological processes, including embryogenesis. In the present study, we investigated the role of membrane type MMP, MT-1-MMP, an activator pro-MMP-2, in metanephric development. Also, its relationship with MMP-2 and its inhibitor, TIMP-2, was studied. Since mRNAs of MT-1-MMP and MMP-2 are respectively expressed in the ureteric bud epithelia and mesenchyme, they are ideally suited for juxtacrine/paracrine interactions during renal development. Northern blot analyses revealed a single approximately 4.5-kb mRNA transcript of MT-1-MMP, and its expression was developmentally regulated. Inclusion of MT-1-MMP antisense oligodeoxynucleotide (ODN) in the culture media induced dysmorphogenetic changes in the embryonic metanephros. MMP-2 antisense ODN also induced similar changes, but they were relatively less; on the other hand TIMP-2 antisense ODN induced a mild increase in the size of explants. Concomitant exposure of MT-1-MMP and MMP-2 antisense ODNs induced profound alterations in the metanephroi. Treatment of TIMP-2 antisense ODN to metanephroi exposed to MT-1-MMP/MMP-2 antisense notably restored the morphology of the explants. Specificity of the MT-1-MMP antisense ODN was reflected in the selective decrease in its mRNA and protein expression. The MT-1-MMP antisense ODN also resulted in a failure in the activation of pro-MMP-2 to MMP-2. These findings suggest that the trimacromolecular complex of MT-1-MMP:MMP-2:TIMP-2 modulates the organogenesis of the metanephros, conceivably by mediating paracrine/juxtacrine epithelial:mesenchymal interactions.


Renal Failure | 2001

STATUS OF GLUCOSE TRANSPORTERS IN THE MAMMALIAN KIDNEY AND RENAL DEVELOPMENT

Elisabeth I. Wallner; Jun Wada; Gianfranco Tramonti; Sun Lin; Yashpal S. Kanwar

Glucose is the main source of energy for the mammalian cells and its entry is mediated via various transporters. About 7 facilitative (GULT-1 to -7) and 2 concentrative glucose transporters (SGLT-1 and -2) have been identified. The facilitative glucose transporters allow the glucose entry into the cell interior due to the concentration gradient and the latter via the Na+-dependent electrochemical gradient. They have similar structural motifs with 12–14 putative transmembrane domains with a predicted protein size varying from 50 to 76 kDa. Some of the facilitative glucose transporters (GLUT-1, -2, -4 and -5) and both the sodium glucose co-transporters (SGLT-1 and -2) are expressed in the kidney. The transporters that are involved in the major transport of glucose in the kidney include GLUT-2 and SGLT-2. They are of high capacity and low affinity type and are expressed in the S1 segment of the proximal tubule. All the transporters expressed in the kidney are developmentally regulated. The mRNA expression of renal GLUTs is variable during the fetal and postnatal periods. On the other hand the mRNA of SGLTs increases steadily from the fetal period to maturity along with the increase in their functional activity, i.e., glucose uptake. Recent studies indicate that the SGLTs are believed to selectively regulate tubulogenesis since they are expressed in the metanephric tubules very early in the embryonic life in mammals.


Seminars in Nephrology | 2003

Renal development in high-glucose ambience and diabetic embryopathy.

Sumant S. Chugh; Elisabeth I. Wallner; Yashpal S. Kanwar

Maternal diabetes has an adverse influence on the intrauterine growth of the fetus, which is attributable to the exposure of the mammalian embryo to an abnormal metabolic environment. A sustained exposure of the fetus to such an environment (ie, elevated concentration of glucose), during the first 6 to 8 weeks of gestation in humans may result in diabetic embryopathy, which is characterized by a multitude of congenital birth defects, including those of the nervous, cardiovascular, skeletal, and urogenital systems. The urogenital abnormalities may be associated with caudal regression syndrome or may occur alone in the form of partial or total renal agenesis. Similarly, an increase in the incidence of morphogenetic defects is observed in offsprings of streptozotocin-induced diabetic rats and mice and also in nonobese diabetic mice. In certain instances, failure in the growth of lower part of embryos or newborn mice has been observed in animals with a severe diabetic state. For further delineation of the mechanisms involved in the pathogenesis of diabetic embryopathy, the investigators used whole-embryo culture systems, and found that glucose can induce defects mainly confined to the lower part of the body involving the genitourinary system. Similarly, dysmorphogenesis of the embryonic metanephros is observed when it is subjected to high concentrations of D-glucose and its epimer D-mannose. This article discusses certain aspects of diabetic embryopathy with an emphasis on changes that occur in the fetal metanephros in high-glucose ambience.


Renal Failure | 2001

RELEVANCE OF ALDO-KETO REDUCTASE FAMILY MEMBERS TO THE PATHOBIOLOGY OF DIABETIC NEPHROPATHY AND RENAL DEVELOPMENT

Elisabeth I. Wallner; Jun Wada; Gianfranco Tramonti; Sun Lin; Satish K. Srivastava; Yashpal S. Kanwar

Aldo-keto reductases (AKRs) are a family of monomeric oxido-reductases with molecular weight ranging from 35–40 kDa and currently includes upwards of 60 members. They are expressed in a wide variety of tissues, where they catalyze the NADPH-dependent reduction of various aliphatic and aromatic aldehydes and ketones. The functions of most of the family members are not well defined. But two members, aldehyde reductase (AKR1A) and aldose reductase (AKR1B), have been extensively studied. The latter has received the most attention since being relevant to the complications of diabetes mellitus. It is up regulated during hyperglycemia, and at the same time there is an increased activity of the sorbitol pathway and non-enzymatic glycation of proteins with ensuing damage in various tissues. It is developmentally regulated in the ocular lens, and is believed to modulate lens fiber morphogenesis during fetal life. Unlike the other AKR family members that are ubiquitously expressed, recently a renal-specific oxio-reductase has been described that is expressed exclusively in the proximal tubules. Although, it has no homology with other AKR members, it binds to NADPH with high afinity and is up-regulated in streptozotocin-induced diabetes in mice. It is also developmentally regulated and seems to selectively modulate renal tubulogenesis during embryonic life.


Microscopy Research and Technique | 1997

Diverse aspects of metanephric development

Elisabeth I. Wallner; Frank A. Carone; Dale R. Abrahamson; Anil Kumar; Yashpal S. Kanwar

Mammalian nephrogenesis constitutes a series of complex developmental processes in which there is a differentiation and rapid proliferation of pluripotent cells leading to the formation of a defined sculpted tissue mass, and this is followed by a continuum of cell replication and terminal differentiation. Metanephrogenesis ensues with the intercalation of epithelial ureteric bud into loosely organized metanephric mesenchyme. Such an interaction is reciprocal, such that the intercalating ureteric bud induces the conversion of metanephric mesenchyme into an epithelial phenotype, while the mesenchyme stimulates the iterations of the ureteric bud. The induced mesenchyme then undergoes a series of developmental stages to form a mature glomerulus and tubular segments of the kidney. Coincidental with the formation of these nephric elements, the developing kidney is vascularized by the process of vasculogenesis and angiogenesis. Thus, the process of metanephric development is quite complex, and it involves a diverse group of molecules whos biological activities are inter‐linked with one another and they regulate, in a concerted manner, the differentiation and maturation of the mammalian kidney. This diverse group of molecules include extracellular matrix (ECM) proteins and their receptors, ECM‐degrading enzymes and their inhibitors, growth factors and their receptors, proto‐oncogenes and transcription factors. A large body of literature data are available, which suggest a critical role of these molecules in metanephric development, and this review summarizes the recent developments that relate to metanephrogenesis. Microsc. Res. Tech. 39:261–284, 1997.


Current Medicinal Chemistry | 2003

Gene Regulation of Aldose-, Aldehyde- and a Renal Specific Oxido Reductase (RSOR) in the Pathobiology of Diabetes Mellitus

Farhad R. Danesh; Jun Wada; Elisabeth I. Wallner; Atul Sahai; Satish K. Srivastava; Yashpal S. Kanwar

Aldose-, aldehyde and renal specific oxido reductase (RSOR) belong to the family of aldo-keto reductases (AKRs). They are monomeric (alpha/beta)8-barrel proteins with a molecular weight ranging from 30 to 40 kDa, and at present include more than 60 members. Except for RSOR, they are expressed in a wide variety of animal and plant species and in various tissues. They catalyze NADPH-dependent reduction of various aliphatic and aromatic aldehyde and ketones. During the past three decades aldehyde reductase (AKR1A) and aldose reductase (AKR1B) have been extensively investigated, and the gene regulation of AKR1B has been noted to be heavily influenced by hyperglycemic state and high glucose ambience in various culture systems. AKR1B catalyzes the conversion of glucose to sorbitol in concert with a coenzyme, NADPH. The newly discovered RSOR has certain structural and functional similarities to AKR1B and seems to be relevant to the renal complications of diabetes mellitus. Like other AKRs, it has a NADPH binding motif, however, it is located at the N-terminus and it probably undergoes N-linked glycosylation in order to achieve functional substrate specificity. Besides the AKR3 motif, it has very little nucleotide or protein sequence homology with other members of the AKR family. Nevertheless, gene regulation of RSOR, like AKR1B, is heavily modulated by carbonyl, oxidative and osmotic stresses, and thus it is anticipated that its discovery would lead to the development of new inhibitors as well as gene therapy targets to alleviate the complications of diabetes mellitus in the future.

Collaboration


Dive into the Elisabeth I. Wallner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Kumar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zheng Z. Liu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiwei Yang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sun Lin

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge