Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth J. Moyer is active.

Publication


Featured researches published by Elisabeth J. Moyer.


Geophysical Research Letters | 1996

ATMOS stratospheric deuterated water and implications for troposphere‐stratosphere transport

Elisabeth J. Moyer; F. W. Irion; Yuk L. Yung; M. R. Gunson

Measurements of the isotopic composition of stratospheric water by the ATMOS instrument are used to infer the convective history of stratospheric air. The average water vapor entering the stratosphere is found to be highly depleted of deuterium, with δDw of −670±80 (67% deuterium loss). Model calculations predict, however, that under conditions of thermodynamic equilibrium, dehydration to stratospheric mixing ratios should produce stronger depletion to δDw of −800 to −900 (80–90% deuterium loss). Deuterium enrichment of water vapor in ascending parcels can occur only in conditions of rapid convection; enrichments persisting into the stratosphere require that those conditions continue to near-tropopause altitudes. We conclude that either the predominant source of water vapor to the uppermost troposphere is enriched convective water, most likely evaporated cloud ice, or troposphere-stratosphere transport occurs closely associated with tropical deep convection.


The Journal of Legal Studies | 2014

Climate Impacts on Economic Growth as Drivers of Uncertainty in the Social Cost of Carbon

Elisabeth J. Moyer; Mark D. Woolley; Nathan J. Matteson; Michael Glotter

We reexamine estimates of the social cost of carbon (SCC) used by agencies as the price of carbon emissions in cost-benefit analysis, focusing on those by the federal Interagency Working Group on SCC (IWG). We show that the models used by the IWG assume continued economic growth in the face of substantial temperature increases, which suggests that they may not capture the full range of possible consequences of climate change. Using the DICE integrated assessment model, we examine the possibility that climate change may directly affect productivity and find that even a modest impact of this type increases SCC estimates substantially. The SCC appears to be highly uncertain and sensitive to modeling assumptions. Understanding the impact of climate change therefore requires understanding how climate-related harms may affect productivity and economic growth. Furthermore, we suggest that misunderstandings about growth assumptions in the model may underlie the debate surrounding the proper discount rate.


Review of Scientific Instruments | 2009

A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere

David Stuart Sayres; Elisabeth J. Moyer; T. F. Hanisco; J. M. St. Clair; Frank N. Keutsch; A. O’Brien; Norton Allen; Larry B. Lapson; J. N. Demusz; M. Rivero; T. Martin; M. Greenberg; C. Tuozzolo; Gregory S. Engel; Jesse H. Kroll; J. B. Paul; J. G. Anderson

We describe here the Harvard integrated cavity output spectroscopy (ICOS) isotope instrument, a mid-IR infrared spectrometer using ICOS to make in situ measurements of the primary isotopologues of water vapor (H(2)O, HDO, and H(2) (18)O) in the upper troposphere and lower stratosphere (UTLS). The long path length provided by ICOS provides the sensitivity and accuracy necessary to measure these or other trace atmospheric species at concentrations in the ppbv range. The Harvard ICOS isotope instrument has been integrated onto NASAs WB-57 high-altitude research aircraft and to date has flown successfully in four field campaigns from winter 2004-2005 to the present. Off-axis alignment and a fully passive cavity ensure maximum robustness against the vibrationally hostile aircraft environment. The very simple instrument design permitted by off-axis ICOS is also helpful in minimizing contamination necessary for accurate measurements in the dry UTLS region. The instrument is calibrated in the laboratory via two separate water addition systems and crosscalibrated against other instruments. Calibrations have established an accuracy of 5% for all species. The instrument has demonstrated measurement precision of 0.14 ppmv, 0.10 ppbv, and 0.16 ppbv in 4 s averages for H(2)O, HDO, and H(2) (18)O, respectively. At a water vapor mixing ratio of 5 ppmv the isotopologue ratio precision is 50[per thousand] and 30[per thousand] for deltaD and delta(18)O, respectively.


Journal of Geophysical Research | 1999

Subsidence, mixing, and denitrification of Arctic polar vortex air measured during POLARIS

M. Rex; R. J. Salawitch; G. C. Toon; B. Sen; J. J. Margitan; G. B. Osterman; J.-F. Blavier; R. S. Gao; Stephen George Donnelly; E. R. Keim; J. A. Neuman; D. W. Fahey; C. R. Webster; D. C. Scott; Robert Herman; R. D. May; Elisabeth J. Moyer; M. R. Gunson; F. W. Irion; A. Y. Chang; C. P. Rinsland; T. P. Bui

We determine the degree of denitrification that occurred during the 1996-1997 Arctic winter using a technique that is based on balloon and aircraft borne measurements of NO y , N 2 O, and CH 4 . The NO 3 /N 2 O relation can undergo significant change due to isentropic mixing of subsided vortex air masses with extravortex air due to the high nonlinearity of the relation. These transport related reductions in NO y can be difficult to distinguish from the effects of denitrification caused by sedimentation of condensed HNO 3 . In this study, high-altitude balloon measurements are used to define the properties of air masses that later descend in the polar vortex to altitudes sampled by the ER-2 aircraft (i.e., ∼20 km) and mix isentropically with extravortex air. Observed correlations of CH 4 and N 2 O are used to quantify the degree of subsidence and mixing for individual air masses. On the basis of these results the expected mixing ratio of NO y resulting from subsidence and mixing, defined here as NO y ** , is calculated and compared with the measured mixing ratio of NO y . Values of NO y and NO y ** agree well during most parts of the flights. A slight deficit of NO y versus NO y ** is found only for a limited region during the ER-2 flight on April 26, 1997. This deficit is interpreted as indication for weak denitrification (∼2-3 ppbv) in that air mass. The small degree of denitrification is consistent with the general synoptic-scale temperature history of the sampled air masses, which did not encounter temperatures below the frostpoint and had relatively brief encounters with temperatures below the nitric acid trihydrate equilibrium temperature. Much larger degrees of denitrification would have been inferred if mixing effects had been ignored, which is the traditional approach to diagnose denitrification. Our analysis emphasizes the importance of using other correlations of conserved species to be able to accurately interpret changes in the NO y /N 2 O relation with respect to denitrification.


Geophysical Research Letters | 1996

Stratospheric Observations of CH3D and HDO from ATMOS Infrared Solar Spectra: Enrichments of Deuterium in Methane and Implications for HD

F. W. Irion; Elisabeth J. Moyer; M. R. Gunson; C. P. Rinsland; Yuk L. Yung; H. A. Michelsen; R. J. Salawitch; A. Y. Chang; Michael J. Newchurch; M. M. Abbas; M. C. Abrams; Rodolphe Zander

Stratospheric mixing ratios of CH_3D from 100 mb to 17 mb (≈ 15 to 28 km) and HDO from 100 mb to 10 mb (≈ 15 to 32 km) have been inferred from high resolution solar occultation infrared spectra from the Atmospheric Trace MOlecule Spectroscopy (ATMOS) Fourier-transform interferometer. The spectra, taken on board the Space Shuttle during the Spacelab 3 and ATLAS-1, -2, and -3 missions, extend in latitude from 70°S to 65°N. We find CH_3D entering the stratosphere at an average mixing ratio of (9.9±0.8) × 10^(−10) with a D/H ratio in methane (7.1±7.4)% less than that in Standard Mean Ocean Water (SMOW) (1σ combined precision and systematic error). In the mid to lower stratosphere, the average lifetime of CH_3D is found to be (1.19±0.02) times that of CH_4, resulting in an increasing D/H ratio in methane as air “ages” and the methane mixing ratio decreases. We find an average of (1.0±0.1) molecules of stratospheric HDO are produced for each CH_3D destroyed (1σ combined precision and systematic error), indicating that the rate of HDO production is approximately equal to the rate of CH_3D destruction. Assuming negligible amounts of deuterium in species other than HDO, CH_3D and HD, this limits the possible change in the stratospheric HD mixing ratio below about 10 mb to be ±0.1 molecules HD created per molecule CH_3D destroyed.


Journal of Geophysical Research | 1999

An examination of chemistry and transport processes in the tropical lower stratosphere using observations of long‐lived and short‐lived compounds obtained during STRAT and POLARIS

F. Flocke; R. L. Herman; R. J. Salawitch; Elliot Atlas; C. R. Webster; S. Schauffler; R. A. Lueb; Randy D. May; Elisabeth J. Moyer; Karen H. Rosenlof; D. C. Scott; D. R. Blake; T. P. Bui

A suite of compounds with a wide range of photochemical lifetimes (3 months to several decades) was measured in the tropical and midlatitude upper troposphere and lower stratosphere during the Stratospheric Tracers of Atmospheric Transport (STRAT) experiment (fall 1995 and winter, summer, and fall 1996) and the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) deployment in late summer 1997. These species include various chlorofluorocarbons, hydrocarbons, halocarbons, and halons measured in whole air samples and CO measured in situ by tunable diode laser spectroscopy. Mixing ratio profiles of long-lived species in the tropical lower stratosphere are examined using a one-dimensional (1-D) photochemical model that includes entrainment from the extratropical stratosphere and is constrained by measured concentrations of OH. Profiles of tracers found using the 1-D model agree well with all the observed tropical profiles for an entrainment time scale of 8.5 -4 +6 months, independent of altitude between potential temperatures of 370 and 500 K. The tropical profile of CO is used to show that the annually averaged ascent rate profile, on the basis of a set of radiative heating calculations, is accurate to approximately ±44%, a smaller uncertainty than found by considering the uncertainties in the radiative model and its inputs. Tropical profiles of ethane and C 2 Cl 4 reveal that the concentration of Cl is higher than expected on the basis of photochemical model simulations using standard gas phase kinetics and established relationships between total inorganic chlorine and CFC-11. Our observations suggest that short-lived organic chlorinated compounds and HCI carried across the tropical tropopause may provide an important source of inorganic chlorine to the tropical lower stratosphere that has been largely unappreciated in previous studies. The entrainment timescale found here is considerably less than the value found by a similar study that focused on observations obtained in the lower stratosphere during 1994. Several possible explanations for this difference are discussed.


Applied Optics | 2006

Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm : new sensitivity limits for absorption measurements in passive optical cavities

Gregory S. Engel; Walter Drisdell; Frank N. Keutsch; Elisabeth J. Moyer; J. G. Anderson

A robust absorption spectrometer using the off-axis integrated cavity output spectroscopy (ICOS) technique in a passive cavity is presented. The observed sensitivity, conceptually the detection threshold for the absorption cross section (cm2) multiplied by the concentration (cm(-3)) and normalized by the averaging time, is measured to be 1.9 x 10(-12) (1/cm square root of Hz). This high sensitivity arises from using the optical cavity to amplify the observed path length in the spectrometer while avoiding cavity resonances by careful design of the spot pattern within the cavity. The instrument is ideally suited for routine monitoring of trace gases in the near-infrared region. A spectrum showing ambient carbon monoxide at 1.57 microm is presented.


Geophysical Research Letters | 1998

Tropical entrainment time scales inferred from stratospheric N2O and CH4 observations

R. L. Herman; D. C. Scott; C. R. Webster; Randy D. May; Elisabeth J. Moyer; R. J. Salawitch; Yuk L. Yung; G. C. Toon; B. Sen; J. J. Margitan; Karen H. Rosenlof; Hope A. Michelsen; J. W. Elkins

Simultaneous in situ measurements of N_2O and CH_4 were made with a tunable diode laser spectrometer (ALIAS II) aboard the Observations from the Middle Stratosphere (OMS) balloon platform from New Mexico, Alaska, and Brazil during 1996 and 1997. We find different compact relationships of CH_4 with N_2O in the tropics and extra-tropics because mixing is slow between these regions. Transport into the extra-tropics from the tropics or the polar vortex leads to deviations from the normal compact relationship. We use measured N_2O and CH_4 and a simple model to quantify entrainment of mid-latitude stratospheric air into the tropics. The entrainment time scale is estimated to be 16 (+17, −8) months for altitudes between 20 and 28 km. The fraction of tropical air entrained from the extra-tropical stratosphere is 50% (+18%, −30%) at 20 km, increasing to 78% (+11%, −19%) at 28 km.


Applied Optics | 1999

AIRBORNE LASER INFRARED ABSORPTION SPECTROMETER (ALIAS-II) FOR IN SITU ATMOSPHERIC MEASUREMENTS OF N2O, CH4, CO, HCL, AND NO2 FROM BALLOON OR REMOTELY PILOTED AIRCRAFT PLATFORMS

D. C. Scott; R. L. Herman; C. R. Webster; Randy D. May; G. J. Flesch; Elisabeth J. Moyer

The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003-cm(-1)), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources. It is designed to make in situ measurements in the lower and middle stratosphere on either a balloon platform or high-altitude remotely piloted aircraft. Chemical species that can be measured precisely include long-lived tracers N(2)O and CH(4), the shorter-lived tracer CO, and chemically active species HCl and NO(2). Advances in electronic instrumentation developed for ALIAS-I, with the experience of more than 250 flights on board NASAs ER-2 aircraft, have been implemented in ALIAS-II. The two-channel spectrometer features an open cradle, multipass absorption cell to ensure minimal contamination from inlet and surfaces. Time resolution of the instrument is <or=3 s, allowing rapid in situ measurements with excellent spatial resolution. ALIAS-II has completed successful balloon flights from New Mexico, Alaska, and Brazil providing CH(4) and N(2)O vertical profiles in the tropics, mid-latitudes, and high northern latitudes up to altitudes of 32 km.


Journal of Geophysical Research | 1999

Closure of the total hydrogen budget of the northern extratropical lower stratosphere

D. F. Hurst; Geoff Dutton; P. A. Romashkin; P. R. Wamsley; F. L. Moore; J. W. Elkins; E. J. Hintsa; Elliot M. Weinstock; Robert Herman; Elisabeth J. Moyer; D. C. Scott; R. D. May; C. R. Webster

Methane (CH4), molecular hydrogen (H2), and water vapor (H2O) were measured concurrently on board the NASA ER-2 aircraft during the 1995–1996 Stratospheric Tracers of Atmospheric Transport (STRAT) and 1997 Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) campaigns. Correlations between these three main hydrogen reservoirs in the northern extratropical lower stratosphere are examined to evaluate H2O production from CH4 and H2 oxidation. The expected ratio of stratospheric H2O production (PH2O)to CH4 destruction (LCH4) = −1.973±0.003 is calculated from an evaluation of CH4 and H2 oxidation reactions and the relationship between H2 and CH4 mixing ratios measured during STRAT. Correlations between H2O and CH4 were tight and linear only for air masses with mean ages ≥3.8 years, restricting this analysis predominantly to latitudes between 40° and 90°N and potential temperatures between 470 and 540 K. The mean observed ΔH2O/CH4 (−2.15±0.18) is in statistical agreement with the expected PH2O/LCH4. The annual mean stratospheric entry mixing ratio for H2O calculated from this slope is 4.0 ± 0.3 ppm. The quantity H2O + 2·CH4 is quasi-conserved at 7.4 ± 0.5 ppm in older air masses in the northern extratropical lower stratosphere. Significant departure of H2O + 2·CH4 from the mean value is a sensitive indicator of processes which influence H2O without affecting CH4, such as dehydration in a polar vortex or near the tropical tropopause. No significant trend is observed in ER-2 aircraft data for H2O + 2·CH4 in the lower stratosphere from 1993 through 1997.

Collaboration


Dive into the Elisabeth J. Moyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. F. Hanisco

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. R. Webster

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D. C. Scott

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. M. St. Clair

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jason M. St. Clair

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge