Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Jonas is active.

Publication


Featured researches published by Elisabeth Jonas.


BMC Genomics | 2008

Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle

Siriluck Ponsuksili; Elisabeth Jonas; Eduard Murani; C. Phatsara; T. Srikanchai; Christina Walz; Manfred Schwerin; K. Schellander; Klaus Wimmers

BackgroundLeakage of water and ions and soluble proteins from muscle cells occurs during prolonged exercise due to ischemia causing muscle damage. Also post mortem anoxia during conversion of muscle to meat is marked by loss of water and soluble components from the muscle cell. There is considerable variation in the water holding capacity of meat affecting economy of meat production. Water holding capacity depends on numerous genetic and environmental factors relevant to structural and biochemical muscle fibre properties a well as ante and post slaughter metabolic processes.ResultsExpression microarray analysis of M. longissimus dorsi RNAs of 74 F2 animals of a resource population showed 1,279 transcripts with trait correlated expression to water holding capacity. Negatively correlated transcripts were enriched in functional categories and pathways like extracellular matrix receptor interaction and calcium signalling. Transcripts with positive correlation dominantly represented biochemical processes including oxidative phosphorylation, mitochondrial pathways, as well as transporter activity. A linkage analysis of abundance of trait correlated transcripts revealed 897 expression QTL (eQTL) with 104 eQTL coinciding with QTL regions for water holding capacity; 96 transcripts had trans acting and 8 had cis acting regulation.ConclusionThe complex relationships between biological processes taking place in live skeletal muscle and meat quality are driven on the one hand by the energy reserves and their utilisation in the muscle and on the other hand by the muscle structure itself and calcium signalling. Holistic expression profiling was integrated with QTL analysis for the trait of interest and for gene expression levels for creation of a priority list of genes out of the orchestra of genes of biological networks relevant to the liability to develop elevated drip loss.


Trends in Biotechnology | 2013

Does genomic selection have a future in plant breeding

Elisabeth Jonas; Dirk-Jan de Koning

Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding.


Journal of Agricultural and Food Chemistry | 2008

Expression Profiling of Muscle Reveals Transcripts Differentially Expressed in Muscle That Affect Water-Holding Capacity of Pork

Siriluck Ponsuksili; Eduard Murani; C. Phatsara; Elisabeth Jonas; Christina Walz; Manfred Schwerin; K. Schellander; Klaus Wimmers

To identify biological processes as well as molecular markers for drip loss, a parameter for water holding capacity of meat, the M. longissimus dorsi transcriptomes of six divergent sib pairs were analyzed using Affymetrix Porcine Genome Array. Functional categories of differentially regulated transcripts were determined by single-gene analysis and gene set analysis. The transcripts being up-regulated at high drip loss belong to groups of genes functionally categorized as genes of membrane proteins, signal transduction, cell communication, response to stimulus, and cytoskeleton. Among genes down-regulated with high drip loss, functional groups of oxidoreductase activity, lipid metabolism, and electron transport were identified. Differential regulation of the abundance of transcripts of these biological networks in live muscle affect mortem biochemical processes of meat maturation. Knowledge of this functional link is indicative for the identification of candidate genes for improvement of meat quality.


Genetics Selection Evolution | 2009

Mapping quantitative trait loci (QTL) in sheep. I. A new male framework linkage map and QTL for growth rate and body weight.

Herman W. Raadsma; Peter C. Thomson; Kyall R. Zenger; Colin Cavanagh; Mary Lam; Elisabeth Jonas; Marilyn Jones; Gina Attard; David Palmer; Frank W. Nicholas

A male sheep linkage map comprising 191 microsatellites was generated from a single family of 510 Awassi-Merino backcross progeny. Except for ovine chromosomes 1, 2, 10 and 17, all other chromosomes yielded a LOD score difference greater than 3.0 between the best and second-best map order. The map is on average 11% longer than the Sheep Linkage Map v4.7 male-specific map. This map was employed in quantitative trait loci (QTL) analyses on body-weight and growth-rate traits between birth and 98 weeks of age. A custom maximum likelihood program was developed to map QTL in half-sib families for non-inbred strains (QTL-MLE) and is freely available on request. The new analysis package offers the advantage of enabling QTL × fixed effect interactions to be included in the model. Fifty-four putative QTL were identified on nine chromosomes. Significant QTL with sex-specific effects (i.e. QTL × sex interaction) in the range of 0.4 to 0.7 SD were found on ovine chromosomes 1, 3, 6, 11, 21, 23, 24 and 26.


Genetics Selection Evolution | 2009

Mapping quantitative trait loci (QTL) in sheep. II. Meta-assembly and identification of novel QTL for milk production traits in sheep

Herman W. Raadsma; Elisabeth Jonas; David McGill; Matthew Hobbs; Mary Lam; Peter C. Thomson

An (Awassi × Merino) × Merino backcross family of 172 ewes was used to map quantitative trait loci (QTL) for different milk production traits on a framework map of 200 loci across all autosomes. From five previously proposed mathematical models describing lactation curves, the Wood model was considered the most appropriate due to its simplicity and its ability to determine ovine lactation curve characteristics. Derived milk traits for milk, fat, protein and lactose yield, as well as percentage composition and somatic cell score were used for single and two-QTL approaches using maximum likelihood estimation and regression analysis. A total of 15 significant (P < 0.01) and additional 25 suggestive (P < 0.05) QTL were detected across both single QTL methods and all traits. In preparation of a meta-analysis, all QTL results were compared with a meta-assembly of QTL for milk production traits in dairy ewes from various public domain sources and can be found on the ReproGen ovine gbrowser http://crcidp.vetsci.usyd.edu.au/cgi-bin/gbrowse/oaries_genome/. Many of the QTL for milk production traits have been reported on chromosomes 1, 3, 6, 16 and 20. Those on chromosomes 3 and 20 are in strong agreement with the results reported here. In addition, novel QTL were found on chromosomes 7, 8, 9, 14, 22 and 24. In a cross-species comparison, we extended the meta-assembly by comparing QTL regions of sheep and cattle, which provided strong evidence for synteny conservation of QTL regions for milk, fat, protein and somatic cell score data between cattle and sheep.


Mammalian Genome | 2008

QTL for the heritable inverted teat defect in pigs

Elisabeth Jonas; Heinz-Josef Schreinemachers; Tina Kleinwächter; Cemal Un; Ina Oltmanns; S. Tetzlaff; Danyel Jennen; Dawid Tesfaye; Siriluck Ponsuksili; Eduard Murani; H. Juengst; Ernst Tholen; K. Schellander; Klaus Wimmers

The mothering ability of a sow largely depends on the shape and function of the mammary gland. The aim of this study was to identify QTL for the heritable inverted teat defect, a condition characterized by disturbed development of functional teats. A QTL analysis was conducted in a porcine experimental population based on Duroc and Berlin Miniature pigs (DUMI). The significant QTL were confirmed by linkage analysis in commercial pigs according to the affected sib pair design and refined by family-based association test (FBAT). Nonparametric linkage (NPL) analysis revealed five significant and seven suggestive QTL for the inverted teat defect in the porcine experimental population. In commercial dam lines five significant NPL values were detected. QTL regions in overlapping marker intervals or close proximity in both populations were found on SSC3, SSC4, SSC6, and SSC11. SSC6 revealed QTL in both populations at different positions, indicating the segregation of at least two QTL. The results confirm the previously proposed polygenic inheritance of the inverted teat defect and, for the first time, point to genomic regions harboring relevant genes. The investigation revealed variation of the importance of QTL in the various populations due to either differences in allele frequencies and statistical power or differences in the genetic background that modulates the impact of the liability loci on the expression of the disease. The QTL study enabled us to name a number of plausible positional candidate genes. The correspondence of QTL regions for the inverted teat defect and previously mapped QTL for teat number are in line with the etiologic relationship of these traits.


Genetics Selection Evolution | 2010

Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL

Colin Cavanagh; Elisabeth Jonas; Matthew Hobbs; Peter C. Thomson; Imke Tammen; Herman W. Raadsma

An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ≥ 3), 15 significant (LOD ≥ 2), and 11 suggestive QTL (1.7 ≤ LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified.A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21.


Frontiers in Genetics | 2015

Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

Elisabeth Jonas; Dirk-Jan de Koning

Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.


Animal Reproduction Science | 2011

ASSOCIATION STUDY AND EXPRESSION ANALYSIS OF CD9 AS CANDIDATE GENE FOR BOAR SPERM QUALITY AND FERTILITY TRAITS

Kanokwan Kaewmala; Muhammad Jasim Uddin; Mehmet Ulas Cinar; Christine Große-Brinkhaus; Elisabeth Jonas; Dawit Tesfaye; C. Phatsara; Ernst Tholen; Christian Looft; K. Schellander

Cluster-of-differentiation antigen 9 (CD9) gene expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as candidate gene for boar semen quality. The association of CD9 with boar sperm quality and fertility trait was analyzed using a total of 340 boars both from purebred Pietrain and Pietrain×Hampshire crosses. A single nucleotide polymorphism (g.358A>T) in intron 6 was significantly associated with sperm motility (MOT) (P<0.001), plasma droplet rate (PDR) (P<0.001) and abnormal spermatozoa rate (ASR) (P<0.01). Boars were divided into two groups with group 1 (G-I) boars having a higher SCON and SMOT, lower SVOL (sperm volume) and group 2 (G-II) having a lower SCON and SMOT, higher SVOL. The mRNA and protein expression levels were evaluated in reproductive, non-reproductive tissues and spermatozoa from G-I and G-II animals by using quantitative real-time PCR and western blotting. When both reproductive and non-reproductive tissues were examined, highest mRNA was expressed in prostate gland, then in the body of the epididymis, vas deferens and tail of the epididymis. In case of reproductive tissues, CD9 expression was higher in tissues and spermatozoa collected from G-I boars than those collected from G-II boars. The mRNA expression was significantly different (P<0.05) in body of epididymis from G-I and G-II boars. The CD9 protein expression results from western blot were coincided with the results of qRT-PCR. Moreover, CD9 protein localization in Leydig cells, Sertoli cells, epithelial cells and spermatozoa was remarkable which indicated the important role of CD9 in spermatogenesis process. By using mRNA and protein expression profiles, it could be shown that CD9 plays a crucial role during sperm development, especially within the epididymis where the maturation of the sperm, a key process for the sperm quality and motility takes place. These results will improve the understanding of the functions of the CD9 in spermatogenesis within the reproductive tracts and will shed light on CD9 as a candidate gene in the selection of good sperm quality boars.


Journal of Dairy Science | 2018

Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle

S. Eriksson; Elisabeth Jonas; L. Rydhmer; H. Röcklinsberg

The hot topic of genetic modification and genome editing is sometimes presented as a rapid solution to various problems in the field of animal breeding and genetics. These technologies hold potential for future use in agriculture but we need to be aware of difficulties in large-scale application and integration in breeding schemes. In this review, we discuss applications of both classical genetic modifications (GM) using vectors and genome editing in dairy cattle breeding. We use an interdisciplinary approach considering both ethical and animal breeding perspectives. Decisions on how to make use of these techniques need to be made based not only on what is possible, but on what is reasonable to do. Principles of animal integrity, naturalness, risk perception, and animal welfare issues are examples of ethically relevant factors to consider. These factors also influence public perception and decisions about regulations by authorities. We need to acknowledge that we lack complete understanding of the genetic background of complex traits. It may be difficult, therefore, to predict the full effect of certain modifications in large-scale breeding programs. We present 2 potential applications: genome editing to dispense with dehorning, and insertion of human genes in bovine genomes to improve udder health as an example of classical GM. Both of these cases could be seen as beneficial for animal welfare but they differ in other aspects. In the former case, a genetic variant already present within the species is introduced, whereas in the latter case, transgenic animals are generated-this difference may influence how society regards the applications. We underline that the use of GM, as well as genome editing, of farm animals such as cattle is not independent of the context, and should be considered as part of an entire process, including, for example, the assisted reproduction technology that needs to be used. We propose that breeding organizations and breeding companies should take an active role in ethical discussions about the use of these techniques and thereby signal to society that these questions are being responsibly addressed.

Collaboration


Dive into the Elisabeth Jonas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge