Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth S. Papazoglou is active.

Publication


Featured researches published by Elisabeth S. Papazoglou.


Cancer Biology & Therapy | 2008

Enhanced EGFR inhibition and distinct epitope recognition by EGFR antagonistic mAbs C225 and 425.

Vishal Kamat; Joshua Michael Donaldson; Csaba Kari; Marlene R.D. Quadros; Peter I. Lelkes; Irwin M. Chaiken; Simon Cocklin; John C. Williams; Elisabeth S. Papazoglou; Ulrich Rodeck

Monoclonal antibodies (mAbs) that inhibit activation of the epidermal growth factor receptor (EGFR) have shown therapeutic potential in select malignancies including breast cancer. Here, we describe that combined use of two such mAbs, C225 (Cetuximab) and 425 (EMD55900), reduced growth and survival of EGFR overexpressing MDA-MB-468 breast cancer cells more effectively than either antibody alone. Similarly, the C225/425 antibody combination more effectively inhibited AKT and MAPK phosphorylation in MDA-MB-468 cells. Surface plasmon resonance, size exclusion chromatography, and analytical ultracentrifugation demonstrated that mAbs C225 and 425 simultaneously bind to distinct antigenic epitopes on domain III of the soluble wild-type EGFR. Furthermore, neither mAb competed with the other for binding to cells expressing either wild-type EGFR or a mutant EGFR (EGFRvIII) associated with neoplasia. Mutagenesis experiments revealed that residues S460/G461 in EGFR domain III are essential components of the 425 epitope and clearly distinguish it from the EGF/ TGF-α binding site and the C225 interaction interface. Collectively, these results support the conclusion that therapeutic EGFR blockade in cancer patients by combined use of mAbs C225 and 425 could provide advantages over the use of the two antibodies as single agents.


Wound Repair and Regeneration | 2010

Image analysis of chronic wounds for determining the surface area

Elisabeth S. Papazoglou; Leonid Zubkov; Xiang Mao; Michael Neidrauer; Nicolas Rannou; Michael S. Weingarten

Progress in wound healing is primarily quantified by the rate of change of the wounds surface area. The most recent guidelines of the Wound Healing Society suggest that a reduction in wound size of <40% within 4 weeks necessitates a reevaluation of the treatment. However, accurate measurement of wound size is challenging due to the complexity of a chronic wound, the variable lighting conditions of examination rooms, and the time constraints of a busy clinical practice. In this paper, we present our methodology to quantify a wound boundary and measure the enclosed wound area reproducibly. The method derives from a combination of color‐based image analysis algorithms, and our results are validated with wounds in animal models and human wounds of diverse patients. Images were taken by an inexpensive digital camera under variable lighting conditions. Approximately 100 patient images and 50 animal images were analyzed and a high overlap was achieved between the manual tracings and the calculated wound area by our method in both groups. The simplicity of our method combined with its robustness suggests that it can be a valuable tool in clinical wound evaluations. The basic challenge of our method is in deep wounds with very small surface areas where color‐based detection can lead to erroneous results and which could be overcome by texture‐based detection methods. The authors are willing to provide the developed MATLAB code for the work discussed in this paper.


Wound Repair and Regeneration | 2008

Correlation of near infrared absorption and diffuse reflectance spectroscopy scattering with tissue neovascularization and collagen concentration in a diabetic rat wound healing model

Michael S. Weingarten; Elisabeth S. Papazoglou; Leonid Zubkov; Linda Zhu; Michael Neidrauer; Guy Savir; Kim Peace; John G. Newby; Kambiz Pourrezaei

The objective of this paper was to correlate optical changes of tissue during wound healing measured by near infrared (NIR) and diffuse reflectance spectroscopy (DRS) with histologic changes in an animal model. Amplitude and phase of scattered light were obtained in a diabetic rat and control model and biopsies were taken for blood vessel ingrowth and collagen concentration. NIR absorption coefficient correlated with blood vessel ingrowth over time, in both the control and diabetic animals. DRS data correlated with collagen concentration. Previous publications by this group documented only the NIR changes during the wound healing process but this is the first reported correlation with histology data. The ability to correlate DRS scattering with collagen concentration during healing is another important and novel finding. This technology may play an important role clinically in assessing the efficacy of wound healing agents in diabetics.


IEEE Transactions on Biomedical Engineering | 2006

Optical properties of wounds: diabetic versus healthy tissue

Elisabeth S. Papazoglou; Michael S. Weingarten; Leonid Zubkov; Linda Zhu; Som D. Tyagi; Kambiz Pourrezaei

Diffuse photon density wave (DPDW) methodology at Near Infrared frequencies has been used to calculate absorption and scattering from wounds of healthy and diabetic rats. The diffusion equation for semi-infinite media is being used for calculating the absorption and scattering coefficients based on measurements of phase and amplitude with a frequency domain device. Differences observed during the course of healing in the two populations can be correlated to the delayed healing observed in diabetics. These results are encouraging and further work will focus on the implementation of this device to the clinical setting as a monitoring tool in chronic diabetic wounds.


ChemMedChem | 2011

Cell-free HIV-1 virucidal action by modified peptide triazole inhibitors of Env gp120.

Arangassery Rosemary Bastian; Kantharaju; Karyn McFadden; Caitlin Duffy; Srivats Rajagopal; Mark Contarino; Elisabeth S. Papazoglou; Irwin M. Chaiken

Initial entry of HIV-1 into host cells remains a compelling and yet elusive target for developing agents to prevent infection. This step is mediated by a sequence of interactions of a trimeric gp120/gp41 envelope (Env) protein complex with host cells, including initial gp120 encounter with the cellular receptor CD4 and a chemokine co-receptor usually either CCR5 or CXCR4 [1]. A peptide triazole class of entry inhibitor leads has been shown to bind to gp120 with close to nanomolar affinity, to suppress protein ligand interactions of the Env protein at both its CD4 and co-receptor binding sites and to inhibit cell infection by a broad range of virus subtypes [2]. These inhibitors appear to function mechanistically by conformationally entrapping gp120 in an inactivated state, different from either the flexible ground state of gp120 or the highly structured CD4-activated state. This entrapment effectively halts the entry process at the initial binding stages.


Journal of Biomedical Optics | 2009

Noninvasive assessment of diabetic foot ulcers with diffuse photon density wave methodology: pilot human study

Elisabeth S. Papazoglou; Michael Neidrauer; Leonid Zubkov; Michael S. Weingarten; Kambiz Pourrezaei

A pilot human study is conducted to evaluate the potential of using diffuse photon density wave (DPDW) methodology at near-infrared (NIR) wavelengths (685 to 830 nm) to monitor changes in tissue hemoglobin concentration in diabetic foot ulcers. Hemoglobin concentration is measured by DPDW in 12 human wounds for a period ranging from 10 to 61 weeks. In all wounds that healed completely, gradual decreases in optical absorption coefficient, oxygenated hemoglobin concentration, and total hemoglobin concentration are observed between the first and last measurements. In nonhealing wounds, the rates of change of these properties are nearly zero or slightly positive, and a statistically significant difference (p<0.05) is observed in the rates of change between healing and nonhealing wounds. Differences in the variability of DPDW measurements over time are observed between healing and nonhealing wounds, and this variance may also be a useful indicator of nonhealing wounds. Our results demonstrate that DPDW methodology with a frequency domain NIR device can differentiate healing from nonhealing diabetic foot ulcers, and indicate that it may have clinical utility in the evaluation of wound healing potential.


Wound Repair and Regeneration | 2010

Prediction of wound healing in human diabetic foot ulcers by diffuse near‐infrared spectroscopy: A pilot study

Michael S. Weingarten; Michael Neidrauer; Alina Mateo; Xiang Mao; Jane McDaniel; Lori Jenkins; Sara Bouraee; Leonid Zubkov; Kambiz Pourrezaei; Elisabeth S. Papazoglou

A human study was conducted in which the efficacy of in vivo diffuse near‐infrared (NIR) spectroscopy was demonstrated in predicting wound healing in diabetic foot ulcers. Sixteen chronic diabetic wounds were followed and assessed for subsurface oxy‐hemoglobin concentration using the NIR device. Weekly measurements were conducted until there was wound closure, limb amputation, or 20 completed visits without healing. Digital photography measured wound size, and the degree of wound contraction was compared with the NIR results. In the 16 patients followed, seven wounds healed, six limbs were amputated, and three wounds remained opened after 20 visits. The initial values in subsurface hemoglobin concentration in all wounds were higher than the nonwound control sites. Healed wounds showed a consistent reduction of hemoglobin concentration several weeks before closure that approached control site values. In wounds that did not heal or resulted in amputation of the limb, the hemoglobin concentration remained elevated. In some cases, these nonhealing wounds appeared to be improving clinically. A negative slope for the rate of change of hemoglobin concentration was indicative of healing across all wounds. In conclusion, evaluation of wounds using NIR may provide an effective measurement of wound healing. NIR spectroscopy can determine wound healing earlier than that visibly assessed by current clinical approaches.


Journal of Biomedical Optics | 2008

Changes in optical properties of tissue during acute wound healing in an animal model

Elisabeth S. Papazoglou; Michael S. Weingarten; Leonid Zubkov; Michael Neidrauer; Linda S. Zhu; Som D. Tyagi; Kambiz Pourrezaei

Changes of optical properties of wound tissue in hairless rats were quantified by diffuse photon density wave methodology at near-infrared frequencies. The diffusion equation for semi-infinite media was used to calculate the absorption and scattering coefficients based on measurements of phase and amplitude with a frequency domain device. There was an increase in the absorption and scattering coefficients and a decrease in blood saturation of the wounds compared with the nonwounded sites. The changes correlated with the healing stage of the wound. The data obtained were supported by immunohistochemical analysis of wound tissue. These results verified now by two independent animal studies could suggest a noninvasive method to detect the progress of wound healing.


Journal of Microscopy | 2006

Automated quantification of quantum‐dot‐labelled epidermal growth factor receptor internalization via multiscale image segmentation

A. Kriete; Elisabeth S. Papazoglou; B. Edrissi; H. Pais; Kambiz Pourrezaei

The ability to monitor epidermal growth factor receptor (EGFr) internalization specifically, and cellular protein concentrations and activation states in general, has been recently improved by the use of appropriately functionalized quantum dots (QDs), as a result of the long‐lasting fluorescence, brightness and multicolour of these nanoparticles. However, important quantitative information about locational proteomics is based on the analysis of the properties of many cells and cell cultures on a per‐cell basis, rather than tracking individual events within one cell. Moreover, relative positional information is often gained from traditional staining protocols of distinct cellular compartments that are prone to noise, fading and low contrast. We apply a novel multiscale image segmentation based on region growing to classify automatically objects in fixed cell preparations and to define regional zones in all cells prior to QD concentration measures. This allows rapid quantitative description of EGFr internalization as it changes with incubation time. The capabilities realizable by simultaneous application of confocal imaging and functionalized QDs in conjunction with advanced image analysis are a prerequisite for automated and multiplexed cytomics assays.


Biosensors and Bioelectronics | 2009

A PMMA microcapillary quantum dot linked immunosorbent assay (QLISA)

Sundar Babu; Sakya Singh Mohapatra; Leonid Zubkov; Sreekant Murthy; Elisabeth S. Papazoglou

The development of a simple and inexpensive quantum dot based immunoassay for detecting myeloperoxidase (MPO) in stool samples is reported (QLISA). The method developed utilizes readily available polymethylmethacrylate (PMMA) microcapillaries as substrates for performing the sandwich assay. High power (80 mW) and low power (10 mW) UV-LEDs were tested for their efficiency in maximizing detection sensitivity in a waveguide illumination or a side illumination mode. The results obtained indicate that both waveguide and side illumination modes can be employed for detecting MPO down to 15 ng/mL, however the high power LED in a side illumination mode improves sensitivity and simplifies the data acquisition process. The protocol and sensor robustness was evaluated with animal stool samples spiked with MPO and the results indicate that the sensitivity of detection is not compromised when used in stool samples. The effect of the ionic strength of the environment on the fluorescence stability of quantum dots was evaluated and found to affect the assay only if long imaging times are employed. Replacing the buffer with glycerol during imaging increased the fluorescence intensity of quantum dots while significantly minimized the loss in intensity even after 2h.

Collaboration


Dive into the Elisabeth S. Papazoglou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Hansberry

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge