Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Widen is active.

Publication


Featured researches published by Elisabeth Widen.


The New England Journal of Medicine | 1989

Early Metabolic Defects in Persons at Increased Risk for Non-Insulin-Dependent Diabetes Mellitus

Johan G. Eriksson; A. Franssila-Kallunki; Agneta Ekstrand; Carola Saloranta; Elisabeth Widen; Camilla Schalin; Leif Groop

To identify early metabolic abnormalities in non-insulin-dependent diabetes mellitus (NIDDM), we measured sensitivity to insulin and insulin secretion in 26 first-degree relatives of patients with NIDDM and compared these subjects both with 14 healthy control subjects with no family history of NIDDM and with 19 patients with NIDDM. The euglycemic insulin-clamp technique, indirect calorimetry, and infusion of [3-3H]glucose were used to assess insulin sensitivity. Total-body glucose metabolism was impaired in the first-degree relatives as compared with the controls (P less than 0.01). The defect in glucose metabolism was almost completely accounted for by a defect in nonoxidative glucose metabolism (primarily the storage of glucose as glycogen). The relatives with normal rates of metabolism (mean +/- SEM, 1.81 +/- 0.27 mg per kilogram of body weight per minute) and impaired rates (1.40 +/- 0.22 mg per kilogram per minute) in oral glucose-tolerance tests had the same degree of impairment in glucose storage as compared with healthy control subjects (3.76 +/- 0.55 mg per kilogram per minute; P less than 0.01 for both comparisons). During hyperglycemic clamping, first-phase insulin secretion was lacking in patients with NIDDM (P less than 0.01) and severely impaired in their relatives with impaired glucose tolerance (P less than 0.05) as compared with control subjects; insulin secretion was normal in the relatives with normal glucose tolerance. We conclude that impaired glucose metabolism is common in the first-degree relatives of patients with NIDDM, despite their normal results on oral glucose-tolerance tests. Both insulin resistance and impaired insulin secretion are necessary for the development of impaired glucose tolerance in these subjects.


American Journal of Human Genetics | 2005

Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus

Snaevar Sigurdsson; Gunnel Nordmark; Harald H H Göring; Katarina Lindroos; Ann-Christin Wiman; Gunnar Sturfelt; Andreas Jönsen; Solbritt Rantapää-Dahlqvist; Bozena Möller; Juha Kere; Sari Koskenmies; Elisabeth Widen; Maija-Leena Eloranta; Heikki Julkunen; Helga Kristjansdottir; Kristjan Steinsson; Gunnar V. Alm; Lars Rönnblom; Ann-Christine Syvänen

Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease caused by both genetic and environmental factors. Genome scans in families with SLE point to multiple potential chromosomal regions that harbor SLE susceptibility genes, and association studies in different populations have suggested several susceptibility alleles for SLE. Increased production of type I interferon (IFN) and expression of IFN-inducible genes is commonly observed in SLE and may be pivotal in the molecular pathogenesis of the disease. We analyzed 44 single-nucleotide polymorphisms (SNPs) in 13 genes from the type I IFN pathway in 679 Swedish, Finnish, and Icelandic patients with SLE, in 798 unaffected family members, and in 438 unrelated control individuals for joint linkage and association with SLE. In two of the genes--the tyrosine kinase 2 (TYK2) and IFN regulatory factor 5 (IRF5) genes--we identified SNPs that displayed strong signals in joint analysis of linkage and association (unadjusted P<10(-7)) with SLE. TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression. Thus, our results support a disease mechanism in SLE that involves key components of the type I IFN system.


Nature Genetics | 2013

Identification of seven loci affecting mean telomere length and their association with disease

Veryan Codd; Christopher P. Nelson; Eva Albrecht; Massimo Mangino; Joris Deelen; Jessica L. Buxton; Jouke-Jan Hottenga; Krista Fischer; Tonu Esko; Ida Surakka; Linda Broer; Dale R. Nyholt; Irene Mateo Leach; Perttu Salo; Sara Hägg; Mary Matthews; Jutta Palmen; Giuseppe Danilo Norata; Paul F. O'Reilly; Danish Saleheen; Najaf Amin; Anthony J. Balmforth; Marian Beekman; Rudolf A. de Boer; Stefan Böhringer; Peter S. Braund; Paul R. Burton; Anton J. M. de Craen; Yanbin Dong; Konstantinos Douroudis

Interindividual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. We report here a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in an additional 10,739 individuals. We identified seven loci, including five new loci, associated with mean LTL (P < 5 × 10−8). Five of the loci contain candidate genes (TERC, TERT, NAF1, OBFC1 and RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all 7 loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of coronary artery disease (21% (95% confidence interval, 5–35%) per standard deviation in LTL, P = 0.014). Our findings support a causal role of telomere-length variation in some age-related diseases.


Diabetologia | 1993

Insulin resistance, hypertension and microalbuminuria in patients with Type 2 (non-insulin-dependent) diabetes mellitus

Leif Groop; Agneta Ekstrand; Carol Forsblom; Elisabeth Widen; Per-Henrik Groop; A. M. Teppo; Johan G. Eriksson

SummaryWe examined the impact of hypertension and microalbuminuria on insulin sensitivity in patients with Type 2 (non-insulin-dependent) diabetes mellitus using the euglycaemic insulin clamp technique in 52 Type 2 diabetic patients and in 19 healthy control subjects. Twenty-five diabetic patients had hypertension and 19 had microalbuminuria. Hypertension per se was associated with a 27% reduction in the rate of total glucose metabolism and a 40% reduction in the rate of non-oxidative glucose metabolism compared with normotensive Type 2 diabetic patients (both p<0.001). Glucose metabolism was also impaired in normotensive microalbuminuric patients compared with normotensive normoalbuminuric patients (29.4±2.2 vs 40.5±2.8 μmol · kg lean body mass−1 · min−1; p=0.012), primarily due to a reduction in non-oxidative glucose metabolism (12.7±2.9 vs 21.1±2.6 μmol · kg lean body mass−1 ·min−1; p=0.06). In a factorial ANOVA design, however, only hypertension (p=0.008) and the combination of hypertension and microalbuminuria (p=0.030) were significantly associated with the rate of glucose metabolism. The highest triglyceride and lowest HDL cholesterol concentrations were observed in Type 2 diabetic patients with both hypertension and microalbuminuria. Of note, glucose metabolism was indistinguishable from that in control subjects in Type 2 diabetic patients without hypertension and microalbuminuria (40.5±2.8 vs 44.4±2.8 μmol · kg lean body mass−1 · min−1). We conclude that insulin resistance in Type 2 diabetes is predominantly associated with either hypertension or microalbuminuria or with both.


Nature Genetics | 2012

A genome-wide association meta-analysis identifies new childhood obesity loci

Jonathan P. Bradfield; H R Taal; N. J. Timpson; André Scherag; Cécile Lecoeur; Nicole M. Warrington; Elina Hyppönen; Claus Holst; Beatriz Valcárcel; Elisabeth Thiering; Rany M. Salem; Frederick R. Schumacher; Diana L. Cousminer; Pma Sleiman; Jianhua Zhao; Robert I. Berkowitz; Karani Santhanakrishnan Vimaleswaran; Ivonne Jarick; Craig E. Pennell; David Evans; B. St Pourcain; Diane J. Berry; Dennis O. Mook-Kanamori; Albert Hofman; Fernando Rivadeneira; A.G. Uitterlinden; C. M. van Duijn; Rjp van der Valk; J. C. de Jongste; Dirkje S. Postma

Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of 14 studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight newly discovered signals yielding association with P < 5 × 10−6 in nine independent data sets (2,818 cases and 4,083 controls), we observed two loci that yielded genome-wide significant combined P values near OLFM4 at 13q14 (rs9568856; P = 1.82 × 10−9; odds ratio (OR) = 1.22) and within HOXB5 at 17q21 (rs9299; P = 3.54 × 10−9; OR = 1.14). Both loci continued to show association when two extreme childhood obesity cohorts were included (2,214 cases and 2,674 controls). These two loci also yielded directionally consistent associations in a previous meta-analysis of adult BMI.


Molecular Psychiatry | 2012

Meta-analysis of genome-wide association studies for personality

M.H.M. de Moor; Paul T. Costa; Antonio Terracciano; Robert F. Krueger; E.J.C. de Geus; T Toshiko; Brenda W. J. H. Penninx; Tonu Esko; P. A. F. Madden; Jaime Derringer; Najaf Amin; Gonneke Willemsen; J.J. Hottenga; Marijn A. Distel; Manuela Uda; Serena Sanna; Philip Spinhoven; C. A. Hartman; Patrick F. Sullivan; Anu Realo; Jüri Allik; A. C. Heath; Michele L. Pergadia; Arpana Agrawal; Peng Lin; Richard A. Grucza; Teresa Nutile; Marina Ciullo; Dan Rujescu; Ina Giegling

Personality can be thought of as a set of characteristics that influence peoples thoughts, feelings and behavior across a variety of settings. Variation in personality is predictive of many outcomes in life, including mental health. Here we report on a meta-analysis of genome-wide association (GWA) data for personality in 10 discovery samples (17 375 adults) and five in silico replication samples (3294 adults). All participants were of European ancestry. Personality scores for Neuroticism, Extraversion, Openness to Experience, Agreeableness and Conscientiousness were based on the NEO Five-Factor Inventory. Genotype data of ∼2.4M single-nucleotide polymorphisms (SNPs; directly typed and imputed using HapMap data) were available. In the discovery samples, classical association analyses were performed under an additive model followed by meta-analysis using the weighted inverse variance method. Results showed genome-wide significance for Openness to Experience near the RASA1 gene on 5q14.3 (rs1477268 and rs2032794, P=2.8 × 10−8 and 3.1 × 10−8) and for Conscientiousness in the brain-expressed KATNAL2 gene on 18q21.1 (rs2576037, P=4.9 × 10−8). We further conducted a gene-based test that confirmed the association of KATNAL2 to Conscientiousness. In silico replication did not, however, show significant associations of the top SNPs with Openness and Conscientiousness, although the direction of effect of the KATNAL2 SNP on Conscientiousness was consistent in all replication samples. Larger scale GWA studies and alternative approaches are required for confirmation of KATNAL2 as a novel gene affecting Conscientiousness.


Journal of Clinical Investigation | 1997

Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect.

Markku Lehto; Tiinamaija Tuomi; Melanie M. Mahtani; Elisabeth Widen; Carol Forsblom; L Sarelin; M Gullström; B Isomaa; M Lehtovirta; A Hyrkkö; Timo Kanninen; Marju Orho; S Manley; R C Turner; Thomas Brettin; Andrew Kirby; J Thomas; Geoffrey M. Duyk; Eric S. Lander; M.-R. Taskinen; Leif Groop

Maturity-onset diabetes of the young (MODY) type 3 is a dominantly inherited form of diabetes, which is often misdiagnosed as non-insulin-dependent diabetes mellitus (NIDDM) or insulin-dependent diabetes mellitus (IDDM). Phenotypic analysis of members from four large Finnish MODY3 kindreds (linked to chromosome 12q with a maximum lod score of 15) revealed a severe impairment in insulin secretion, which was present also in those normoglycemic family members who had inherited the MODY3 gene. In contrast to patients with NIDDM, MODY3 patients did not show any features of the insulin resistance syndrome. They could be discriminated from patients with IDDM by lack of glutamic acid decarboxylase antibodies (GAD-Ab). Taken together with our recent findings of linkage between this region on chromosome 12 and an insulin-deficient form of NIDDM (NIDDM2), the data suggest that mutations at the MODY3/NIDDM2 gene(s) result in a reduced insulin secretory response, that subsequently progresses to diabetes and underlines the importance of subphenotypic classification in studies of diabetes.


The New England Journal of Medicine | 1993

Association between Polymorphism of the Glycogen Synthase Gene and Non-Insulin-Dependent Diabetes Mellitus

Leif Groop; Maija Kankuri; Camilla Schalin-Jäntti; Agneta Ekstrand; Pirjo Nikula-Ijäs; Elisabeth Widen; Esa Kuismanen; Johan G. Eriksson; A. Franssila-Kallunki; Carola Saloranta; Saija Koskimies

BACKGROUND The storage of glucose as glycogen in skeletal muscle is frequently impaired in patients with non-insulin-dependent diabetes mellitus (NIDDM) and their nondiabetic relatives. Despite an intensive search for candidate genes associated with NIDDM, no data have been available on the gene coding for the key enzyme of this pathway, glycogen synthase. METHODS AND RESULTS Using a human complementary DNA probe, the restriction enzyme Xbal, and Southern blot analysis, we identified two polymorphic alleles, A1 and A2, in the glycogen synthase gene. The gene was localized to chromosome 19. The A1A2 or A2A2 genotype was found in 30 percent of 107 patients with NIDDM but in only 8 percent of 164 nondiabetic subjects without a family history of NIDDM (P < 0.001). The diabetic patients with the A2 allele had a stronger family history of NIDDM (P = 0.019), a higher prevalence of hypertension (P = 0.008), and a more severe defect in insulin-stimulated glucose storage (P = 0.001) than the diabetic patients with the A1 allele. The concentration of the glycogen synthase protein in biopsy specimens of skeletal muscle from the patients with the A2 allele was normal, however, suggesting that expression of the gene was unaltered. The Xbal polymorphism was due to a change of a single base in an intron. CONCLUSIONS The Xbal polymorphism of the glycogen synthase gene identifies a subgroup of patients with NIDDM characterized by a strong family history of NIDDM, a high prevalence of hypertension, and marked insulin resistance.


PLOS ONE | 2012

Genome-Wide Association Studies of Asthma in Population-Based Cohorts Confirm Known and Suggested Loci and Identify an Additional Association near HLA

Adaikalavan Ramasamy; Mikko Kuokkanen; Sailaja Vedantam; Zofia K. Z. Gajdos; Alexessander Couto Alves; Helen N. Lyon; Manuel A. Ferreira; David P. Strachan; Jing Hua Zhao; Michael J. Abramson; Matthew A. Brown; Lachlan Coin; Shyamali C. Dharmage; David L. Duffy; Tari Haahtela; Andrew C. Heath; Christer Janson; Mika Kähönen; Kay-Tee Khaw; Jaana Laitinen; Peter Le Souef; Terho Lehtimäki; Pamela A. F. Madden; Guy B. Marks; Nicholas G. Martin; Melanie C. Matheson; C. Palmer; Aarno Palotie; Anneli Pouta; Colin F. Robertson

Rationale Asthma has substantial morbidity and mortality and a strong genetic component, but identification of genetic risk factors is limited by availability of suitable studies. Objectives To test if population-based cohorts with self-reported physician-diagnosed asthma and genome-wide association (GWA) data could be used to validate known associations with asthma and identify novel associations. Methods The APCAT (Analysis in Population-based Cohorts of Asthma Traits) consortium consists of 1,716 individuals with asthma and 16,888 healthy controls from six European-descent population-based cohorts. We examined associations in APCAT of thirteen variants previously reported as genome-wide significant (P<5x10−8) and three variants reported as suggestive (P<5×10−7). We also searched for novel associations in APCAT (Stage 1) and followed-up the most promising variants in 4,035 asthmatics and 11,251 healthy controls (Stage 2). Finally, we conducted the first genome-wide screen for interactions with smoking or hay fever. Main Results We observed association in the same direction for all thirteen previously reported variants and nominally replicated ten of them. One variant that was previously suggestive, rs11071559 in RORA, now reaches genome-wide significance when combined with our data (P = 2.4×10−9). We also identified two genome-wide significant associations: rs13408661 near IL1RL1/IL18R1 (P Stage1+Stage2 = 1.1x10−9), which is correlated with a variant recently shown to be associated with asthma (rs3771180), and rs9268516 in the HLA region (P Stage1+Stage2 = 1.1x10−8), which appears to be independent of previously reported associations in this locus. Finally, we found no strong evidence for gene-environment interactions with smoking or hay fever status. Conclusions Population-based cohorts with simple asthma phenotypes represent a valuable and largely untapped resource for genetic studies of asthma.


Journal of Medical Genetics | 2001

A dominant gene for developmental dyslexia on chromosome 3

Jaana Nopola-Hemmi; Birgitta Myllyluoma; Tuomas Haltia; Mikko Taipale; Vesa Ollikainen; Timo Ahonen; Arja Voutilainen; Juha Kere; Elisabeth Widen

Developmental dyslexia is a neurofunctional disorder characterised by an unexpected difficulty in learning to read and write despite adequate intelligence, motivation, and education. Previous studies have suggested mostly quantitative susceptibility loci for dyslexia on chromosomes 1, 2, 6, and 15, but no genes have been identified yet. We studied a large pedigree, ascertained from 140 families considered, segregating pronounced dyslexia in an autosomal dominant fashion. Affected status and the subtype of dyslexia were determined by neuropsychological tests. A genome scan with 320 markers showed a novel dominant locus linked to dyslexia in the pericentromeric region of chromosome 3 with a multipoint lod score of 3.84. Nineteen out of 21 affected pedigree members shared this region identical by descent (corrected p<0.001). Previously implicated genomic regions showed no evidence for linkage. Sequencing of two positional candidate genes, 5HT1F andDRD3, did not support their role in dyslexia. The new locus on chromosome 3 is associated with deficits in all three essential components involved in the reading process, namely phonological awareness, rapid naming, and verbal short term memory.

Collaboration


Dive into the Elisabeth Widen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jari Lahti

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Kere

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Diana L. Cousminer

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge