Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabetta Coppi is active.

Publication


Featured researches published by Elisabetta Coppi.


Science | 2008

Sporadic Autonomic Dysregulation and Death Associated with Excessive Serotonin Autoinhibition

Enrica Audero; Elisabetta Coppi; Boris Mlinar; Tiziana Rossetti; Antonio Caprioli; Mumna Al Banchaabouchi; Renato Corradetti; Cornelius Gross

Sudden infant death syndrome is the leading cause of death in the postneonatal period in developed countries. Postmortem studies show alterations in serotonin neurons in the brainstem of such infants. However, the mechanism by which altered serotonin homeostasis might cause sudden death is unknown. We investigated the consequences of altering the autoinhibitory capacity of serotonin neurons with the reversible overexpression of serotonin 1A autoreceptors in transgenic mice. Overexpressing mice exhibited sporadic bradycardia and hypothermia that occurred during a limited developmental period and frequently progressed to death. Moreover, overexpressing mice failed to activate autonomic target organs in response to environmental challenges. These findings show that excessive serotonin autoinhibition is a risk factor for catastrophic autonomic dysregulation and provide a mechanism for a role of altered serotonin homeostasis in sudden infant death syndrome.


Stem Cells | 2007

ATP Modulates Cell Proliferation and Elicits Two Different Electrophysiological Responses in Human Mesenchymal Stem Cells

Elisabetta Coppi; Anna Maria Pugliese; Serena Urbani; Alessia Melani; Elisabetta Cerbai; Benedetta Mazzanti; Alberto Bosi; Riccardo Saccardi; Felicita Pedata

Bone marrow‐derived human mesenchymal stem cells (hMSCs) have the potential to differentiate into several cell lines. Extracellular adenosine 5′‐triphosphate (ATP) acts as a potent signaling molecule mediating cell‐to‐cell communication. Particular interest has been focused in recent years on the role of ATP in stem cell proliferation and differentiation. In the present work, we demonstrate that hMSCs at early stages of culture (P0–P5) spontaneously release ATP, which decreases cell proliferation. Increased hMSC proliferation is induced by the unselective P2 antagonist pyridoxalphosphate‐6‐azophenyl‐2′,4′‐disulfonate (PPADS) and by the selective P2Y1 antagonist 2′‐deoxy‐N6‐methyladenosine3′,5′‐bisphosphate (MRS 2179). A functional role of extracellular ATP in modulating ionic conductances with the whole‐cell and/or perforated patch‐clamp techniques was also investigated. Exogenous ATP increased both the voltage‐sensitive outward and inward currents in 47% of cells, whereas, in 31% of cells, only an increase in inward currents was found. Cells responding in this dual manner to ATP presented different resting membrane potentials. Both ATP‐induced effects had varying sensitivity to the P2 antagonists PPADS and MRS 2179. Outward ATP‐sensitive currents are carried by potassium ions, since they are blocked by cesium replacement and are Ca2+‐dependent because they are eliminated in the presence of 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid. On the basis of different electrophysiological and pharmacological characteristics, we conclude that outward ATP‐sensitive currents are due to Ca2+‐dependent K+‐channel activation following stimulation of P2Y receptors, whereas inward ATP‐sensitive currents are mediated by P2X receptor activation. In summary, ATP released in early life stages of hMSCs modulates their proliferation rate and likely acts as one of the early factors determining their cell fate.


British Journal of Pharmacology | 2006

A3 adenosine receptor antagonists delay irreversible synaptic failure caused by oxygen and glucose deprivation in the rat CA1 hippocampus in vitro.

Anna Maria Pugliese; Elisabetta Coppi; Giampiero Spalluto; Renato Corradetti; Felicita Pedata

The role of adenosine A3 receptor activation during ischaemia‐like conditions produced by oxygen and glucose deprivation (OGD) was evaluated with extracellular recordings from the CA1 region of rat hippocampal slices. In all, 7 min of OGD evoked tissue anoxic depolarisation (AD, peak at ∼7 min from OGD start, n=20) and were invariably followed by irreversible loss of electrically evoked field epsps (fepsps, n=42). The selective adenosine A3 antagonists 3‐propyl‐6‐ethyl‐5[(ethylthio)carbonyl]‐2‐phenyl‐4‐propyl‐3‐pyridinecarboxylate (MRS 1523, 1–100 nM, n=31), N‐[9‐chloro‐2‐(2‐furanyl)[1,2,4]‐triazolo[1,5‐c]quinazolin‐5‐yl]benzeneacetamide (MRS 1220, 100 nM, n=7), N‐(2‐methoxyphenyl)‐N′‐[2‐(3‐pyrindinyl)‐4‐quinazolinyl]‐urea, (VUF 5574, 100 nM, n=3) and 5‐[[(4‐pyridyl)amino]carbonyl]amino‐8‐methyl‐2‐(2‐furyl)‐pyrazolo[4,3‐e]1,2,4‐triazolo[1,5‐c]pyrimidine hydrochloride (1 nM, n=4), prevented the irreversible failure of neurotransmission induced by 7 min OGD (n=45) and the development of AD in 20 out of 22 monitored slices. When tested on OGD episodes of longer duration (8–10 min, n=18), 100 nM MRS 1523 prevented or delayed the appearance of AD and exerted a protective effect on neurotransmission for episodes of up to 9 min duration. In the absence of AD, the fepsp recovery was almost total, regardless of OGD episode duration. These findings support the notion that A3 receptor stimulation is deleterious during ischaemia and suggest that selective A3 receptor block may substantially increase the resistance of the CA1 hippocampal region to ischaemic damage.


Purinergic Signalling | 2007

The role of ATP and adenosine in the brain under normoxic and ischemic conditions.

Felicita Pedata; Alessia Melani; Anna Maria Pugliese; Elisabetta Coppi; Sara Cipriani; Chiara Traini

By taking advantage of some recently synthesized compounds that are able to block ecto-ATPase activity, we demonstrated that adenosine triphosphate (ATP) in the hippocampus exerts an inhibitory action independent of its degradation to adenosine. In addition, tonic activation of P2 receptors contributes to the normally recorded excitatory neurotransmission. The role of P2 receptors becomes critical during ischemia when extracellular ATP concentrations increase. Under such conditions, P2 antagonism is protective. Although ATP exerts a detrimental role under ischemia, it also exerts a trophic role in terms of cell division and differentiation. We recently reported that ATP is spontaneously released from human mesenchymal stem cells (hMSCs) in culture. Moreover, it decreases hMSC proliferation rate at early stages of culture. Increased hMSC differentiation could account for an ATP-induced decrease in cell proliferation. ATP as a homeostatic regulator might exert a different effect on cell trophism according to the rate of its efflux and receptor expression during the cell life cycle. During ischemia, adenosine formed by intracellular ATP escapes from cells through the equilibrative transporter. The protective role of adenosine A1 receptors during ischemia is well accepted. However, the use of selective A1 agonists is hampered by unwanted peripheral effects, thus attention has been focused on A2A and A3 receptors. The protective effects of A2A antagonists in brain ischemia may be largely due to reduced glutamate outflow from neurones and glial cells. Reduced activation of p38 mitogen-activated protein kinases that are involved in neuronal death through transcriptional mechanisms may also contribute to protection by A2A antagonism. Evidence that A3 receptor antagonism may be protective after ischemia is also reported.


Journal of Cerebral Blood Flow and Metabolism | 2013

Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia

Mirko Muzzi; Francesco Blasi; Alessio Masi; Elisabetta Coppi; Chiara Traini; Roberta Felici; Maria Pittelli; Leonardo Cavone; Anna Maria Pugliese; Flavio Moroni; Alberto Chiarugi

Therapeutic hypothermia is of relevance to treatment of increased body temperature and brain injury, but drugs inducing selective, rapid, and safe cooling in humans are not available. Here, we show that injections of adenosine 5′-monophosphate (AMP), an endogenous nucleotide, promptly triggers hypothermia in mice by directly activating adenosine A1 receptors (A1R) within the preoptic area (POA) of the hypothalamus. Inhibition of constitutive degradation of brain extracellular AMP by targeting ecto 5′-nucleotidase, also suffices to prompt hypothermia in rodents. Accordingly, sensitivity of mice and rats to the hypothermic effect of AMP is inversely related to their hypothalamic 5′-nucleotidase activity. Single-cell electrophysiological recording indicates that AMP reduces spontaneous firing activity of temperature-insensitive neurons of the mouse POA, thereby retuning the hypothalamic thermoregulatory set point towards lower temperatures. Adenosine 5′-monophosphate also suppresses prostaglandin E2-induced fever in mice, having no effects on peripheral hyperthermia triggered by dioxymetamphetamine (ecstasy) overdose. Together, data disclose the role of AMP, 5′-nucleotidase, and A1R in hypothalamic thermoregulation, as well and their therapeutic relevance to treatment of febrile illness.


Neurobiology of Aging | 2015

Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ß toxicity: biochemical, epigenetic and functional correlates

Ilaria Luccarini; Cristina Grossi; Stefania Rigacci; Elisabetta Coppi; Anna Maria Pugliese; Daniela Pantano; Giancarlo la Marca; Teresa Ed Dami; Andrea Berti; Massimo Stefani; Fiorella Casamenti

Amyloid-ß (Aß) fragments, oligomeric Aß aggregates, and pyroglutamylated-Aß peptides, as well as epigenetic mechanisms and autophagy dysfunction all appear to contribute in various ways to Alzheimers disease progression. We previously showed that dietary supplementation of oleuropein aglycone, a natural phenol abundant in the extra virgin olive oil, can be protective by reducing Aß42 deposits in the brain of young and middle-aged TgCRND8 mice. Here, we extended our study to aged TgCRND8 mice showing increased pE3-Aß in the brain deposits. We report that oleuropein aglycone is active against glutaminylcyclase-catalyzed pE3-Aß generation reducing enzyme expression and interferes both with Aß42 and pE3-Aß aggregation. Moreover, the phenol astonishingly activates neuronal autophagy even in mice at advanced stage of pathology, where it increases histone 3 and 4 acetylation, which matches both a decrease of histone deacetylase 2 expression and a significant improvement of synaptic function. The occurrence of these functional, epigenetic, and histopathologic beneficial effects even at a late stage of the pathology suggests that the phenol could be beneficial at the therapeutic, in addition to the prevention, level.


Glia | 2013

UDP-glucose enhances outward K+ currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors

Elisabetta Coppi; Giovanna Maraula; Marta Fumagalli; Paola Failli; Lucrezia Cellai; Elisabetta Bonfanti; Luca Mazzoni; Raffaele Coppini; Maria P. Abbracchio; Felicita Pedata; Anna Maria Pugliese

In the developing and mature central nervous system, NG2 expressing cells comprise a population of cycling oligodendrocyte progenitor cells (OPCs) that differentiate into mature, myelinating oligodendrocytes (OLGs). OPCs are also characterized by high motility and respond to injury by migrating into the lesioned area to support remyelination. K+ currents in OPCs are developmentally regulated during differentiation. However, the mechanisms regulating these currents at different stages of oligodendrocyte lineage are poorly understood. Here we show that, in cultured primary OPCs, the purinergic G‐protein coupled receptor GPR17, that has recently emerged as a key player in oligodendrogliogenesis, crucially regulates K+ currents. Specifically, receptor stimulation by its agonist UDP‐glucose enhances delayed rectifier K+ currents without affecting transient K+ conductances. This effect was observed in a subpopulation of OPCs and immature pre‐OLGs whereas it was absent in mature OLGs, in line with GPR17 expression, that peaks at intermediate phases of oligodendrocyte differentiation and is thereafter downregulated to allow terminal maturation. The effect of UDP‐glucose on K+ currents is concentration‐dependent, blocked by the GPR17 antagonists MRS2179 and cangrelor, and sensitive to the K+ channel blocker tetraethyl‐ammonium, which also inhibits oligodendrocyte maturation. We propose that stimulation of K+ currents is responsible for GPR17‐induced oligodendrocyte differentiation. Moreover, we demonstrate, for the first time, that GPR17 activation stimulates OPC migration, suggesting an important role for this receptor after brain injury. Our data indicate that modulation of GPR17 may represent a strategy to potentiate the post‐traumatic response of OPCs under demyelinating conditions, such as multiple sclerosis, stroke, and brain trauma.


Purinergic Signalling | 2007

Role of P2 purinergic receptors in synaptic transmission under normoxic and ischaemic conditions in the CA1 region of rat hippocampal slices

Elisabetta Coppi; Anna Maria Pugliese; Holger Stephan; Christa E. Müller; Felicita Pedata

The role of ATP and its stable analogue ATPγS [adenosine-5′-o-(3-thio)triphosphate] was studied in rat hippocampal neurotransmission under normoxic conditions and during oxygen and glucose deprivation (OGD). Field excitatory postsynaptic potentials (fEPSPs) from the dendritic layer or population spikes (PSs) from the soma were extracellularly recorded in the CA1 area of the rat hippocampus. Exogenous application of ATP or ATPγS reduced fEPSP and PS amplitudes. In both cases the inhibitory effect was blocked by the selective A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and was potentiated by different ecto-ATPase inhibitors: ARL 67156 (6-N,N-diethyl-D-β,γ-dibromomethylene), BGO 136 (1-hydroxynaphthalene-3,6-disulfonate) and PV4 [hexapotassium dihydrogen monotitanoundecatungstocobaltate(II) tridecahydrate, K6H2[TiW11CoO40]·13H2O]. ATPγS-mediated inhibition was reduced by the P2 antagonist suramin [8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonate] at the somatic level and by other P2 blockers, PPADS (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate) and MRS 2179 (2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate), at the dendritic level. After removal of both P2 agonists, a persistent increase in evoked synaptic responses was recorded both at the dendritic and somatic levels. This effect was prevented in the presence of different P2 antagonists. A 7-min OGD induced tissue anoxic depolarization and was invariably followed by irreversible loss of fEPSP. PPADS, suramin, MRS2179 or BBG (brilliant blue G) significantly prevented the irreversible failure of neurotransmission induced by 7-min OGD. Furthermore, in the presence of these P2 antagonists, the development of anoxic depolarization was blocked or significantly delayed. Our results indicate that P2 receptors modulate CA1 synaptic transmission under normoxic conditions by eliciting both inhibitory and excitatory effects. In the same brain region, P2 receptor stimulation plays a deleterious role during a severe OGD insult.


Mediators of Inflammation | 2014

Adenosine A2A receptors modulate acute injury and neuroinflammation in brain ischemia.

Felicita Pedata; Anna Maria Pugliese; Elisabetta Coppi; Ilaria Dettori; Giovanna Maraula; Lucrezia Cellai; Alessia Melani

The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.


Brain | 2016

TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress

Gabriela Trevisan; Silvia Benemei; Serena Materazzi; Francesco De Logu; Gaetano De Siena; Mateus Rossato; Elisabetta Coppi; Ilaria Maddalena Marone; Juliano Ferreira; Pierangelo Geppetti; Romina Nassini

Despite intense investigation, the mechanisms of the different forms of trigeminal neuropathic pain remain substantially unidentified. The transient receptor potential ankyrin 1 channel (encoded by TRPA1) has been reported to contribute to allodynia or hyperalgesia in some neuropathic pain models, including those produced by sciatic nerve constriction. However, the role of TRPA1 and the processes that cause trigeminal pain-like behaviours from nerve insult are poorly understood. The role of TRPA1, monocytes and macrophages, and oxidative stress in pain-like behaviour evoked by the constriction of the infraorbital nerve in mice were explored. C57BL/6 and wild-type (Trpa1(+/+)) mice that underwent constriction of the infraorbital nerve exhibited prolonged (20 days) non-evoked nociceptive behaviour and mechanical, cold and chemical hypersensitivity in comparison to sham-operated mice (P < 0.05-P < 0.001). Both genetic deletion of Trpa1 (Trpa1(-/-)) and pharmacological blockade (HC-030031 and A-967079) abrogated pain-like behaviours (both P < 0.001), which were abated by the antioxidant, α-lipoic acid, and the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin (both P < 0.001). Nociception and hypersensitivity evoked by constriction of the infraorbital nerve was associated with intra- and perineural monocytic and macrophagic invasion and increased levels of oxidative stress by-products (hydrogen peroxide and 4-hydroxynonenal). Attenuation of monocyte/macrophage increase by systemic treatment with an antibody against the monocyte chemoattractant chemokine (C-C motif) ligand 2 (CCL2) or the macrophage-depleting agent, clodronate (both P < 0.05), was associated with reduced hydrogen peroxide and 4-hydroxynonenal perineural levels and pain-like behaviours (all P < 0.01), which were abated by perineural administration of HC-030031, α-lipoic acid or the anti-CCL2 antibody (all P < 0.001). The present findings propose that, in the constriction of the infraorbital nerve model of trigeminal neuropathic pain, pain-like behaviours are entirely mediated by the TRPA1 channel, targeted by increased oxidative stress by-products released from monocytes and macrophages clumping at the site of nerve injury.

Collaboration


Dive into the Elisabetta Coppi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Fusco

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge