Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabetta Iori is active.

Publication


Featured researches published by Elisabetta Iori.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Rosiglitazone Reduces Glucose-Induced Oxidative Stress Mediated by NAD(P)H Oxidase via AMPK-Dependent Mechanism

Giulio Ceolotto; Alessandra Gallo; Italia Papparella; Lorenzo Franco; Ellen Murphy; Elisabetta Iori; Elisa Pagnin; Gian Paolo Fadini; Mattia Albiero; Andrea Semplicini; Angelo Avogaro

Objective—Hyperglycemia is the main determinant of long-term diabetic complications, mainly through induction of oxidative stress. NAD(P)H oxidase is a major source of glucose-induced oxidative stress. In this study, we tested the hypothesis that rosiglitazone (RSG) is able to quench oxidative stress initiated by high glucose through prevention of NAD(P)H oxidase activation. Methods and Results—Intracellular ROS were measured using the fluoroprobe TEMPO-9-AC in HUVECs exposed to control (5 mmol/L) and moderately high (10 mmol/L) glucose concentrations. NAD(P)H oxidase and AMPK activities were determined by Western blot. We found that 10 mmol/L glucose increased significantly ROS production in comparison with 5 mmol/L glucose, and that this effect was completely abolished by RSG. Interestingly, inhibition of AMPK, but not PPAR&ggr;, prevented this effect of RSG. AMPK phosphorylation by RSG was necessary for its ability to hamper NAD(P)H oxidase activation, which was indispensable for glucose-induced oxidative stress. Downstream of AMPK activation, RSG exerts antioxidative effects by inhibiting PKC. Conclusions—This study demonstrates that RSG activates AMPK which, in turn, prevents hyperactivity of NAD(P)H oxidase induced by high glucose, possibly through PKC inhibition. Therefore, RSG protects endothelial cells against glucose-induced oxidative stress with an AMPK-dependent and a PPAR&ggr;-independent mechanism.


Diabetic Medicine | 2008

In Type 1 diabetic patients with good glycaemic control, blood glucose variability is lower during continuous subcutaneous insulin infusion than during multiple daily injections with insulin glargine

Daniela Bruttomesso; Dalia Crazzolara; Alberto Maran; S. Costa; M Dal Pos; A. Girelli; G. Lepore; M Aragona; Elisabetta Iori; U. Valentini; S. Del Prato; Antonio Tiengo; A. Buhr; Roberto Trevisan; Aldo Baritussio

Aims  The superiority of continuous subcutaneous insulin infusion (CSII) over multiple daily injections (MDI) with glargine is uncertain. In this randomized cross‐over study, we compared CSII and MDI with glargine in patients with Type 1 diabetes well controlled with CSII. The primary end‐point was glucose variability.


Diabetes | 2010

Nitric Oxide Synthesis Is Reduced in Subjects With Type 2 Diabetes and Nephropathy

Paolo Tessari; Diego Cecchet; Alessandra Cosma; Monica Vettore; Anna Coracina; Renato Millioni; Elisabetta Iori; Lucia Puricelli; Angelo Avogaro; Monica Vedovato

OBJECTIVE Nitric oxide (NO) is a key metabolic and vascular regulator. Its production is stimulated by insulin. A reduced urinary excretion of NO products (NOx) is frequently found in type 2 diabetes, particularly in association with nephropathy. However, whether the decreased NOx excretion in type 2 diabetes is caused by a defective NOx production from arginine in response to hyperinsulinemia has never been studied. RESEARCH DESIGN AND METHODS We measured NOx fractional (FSR) and absolute (ASR) synthesis rates in type 2 diabetic patients with diabetic nephropathy and in control subjects, after l-[15N2-guanidino]-arginine infusion, and use of precursor–product relationships. The study was conducted both before and after an euglycemic hyperinsulinemic (∼1,000–1,200 pmol/l) clamp. RESULTS In type 2 diabetes, NOx FSR was reduced both under basal (19.3 ± 3.9% per day, vs. 22.9 ± 4.5% per day in control subjects) and hyperinsulinemic states (24.0 ± 5.6% per day, vs. 37.9 ± 6.4% per day in control subjects; P < 0.03 by ANOVA). Similarly, in type 2 diabetes, NOx ASR was lower than in control subjects under both conditions (basal, 0.32 ± 0.06 vs. 0.89 ± 0.34 mol per day; hyperinsulinemia, 0.35 ± 0.07 vs. 1.15 ± 0.38 mol per day; P = 0.01 by ANOVA). In type 2 diabetes, the ability of insulin to stimulate both the FSR (4.7 ± 3.2% per day) and the ASR (0.03 ± 0.04 mol per day) of NOx was several-fold lower than that in control subjects (15.0 ± 2.9% per day and 0.25 ± 0.07 mol per day, P < 0.03 and P < 0.02, respectively). Also the fraction of arginine flux converted to NOx (basal, 0.22 ± 0.05% vs. 0.65 ± 0.25%; hyperinsulinemia, 0.32 ± 0.06% vs. 1.03 ± 0.33%) was sharply reduced in the patients (P < 0.01 by ANOVA). CONCLUSIONS In type 2 diabetic patients with nephropathy, intravascular NOx synthesis from arginine is decreased under both basal and hyperinsulinemic states. This defect extends the concept of insulin resistance to NO metabolism.


Diabetes | 2010

The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing

Gian Paolo Fadini; Mattia Albiero; Lisa Menegazzo; Elisa Boscaro; Elisa Pagnin; Elisabetta Iori; Chiara Cosma; Annunziata Lapolla; Vittorio Pengo; Massimo Stendardo; Carlo Agostini; Pier Giuseppe Pelicci; Marco Giorgio; Angelo Avogaro

OBJECTIVE The redox enzyme p66Shc produces hydrogen peroxide and triggers proapoptotic signals. Genetic deletion of p66Shc prolongs life span and protects against oxidative stress. In the present study, we evaluated the role of p66Shc in an animal model of diabetic wound healing. RESEARCH DESIGN AND METHODS Skin wounds were created in wild-type (WT) and p66Shc−/− control and streptozotocin-induced diabetic mice with or without hind limb ischemia. Wounds were assessed for collagen content, thickness and vascularity of granulation tissue, apoptosis, reepithelialization, and expression of c-myc and β-catenin. Response to hind limb ischemia was also evaluated. RESULTS Diabetes delayed wound healing in WT mice with reduced granulation tissue thickness and vascularity, increased apoptosis, epithelial expression of c-myc, and nuclear localization of β-catenin. These nonhealing features were worsened by hind limb ischemia. Diabetes induced p66Shc expression and activation; wound healing was significantly faster in p66Shc−/− than in WT diabetic mice, with or without hind limb ischemia, at 1 and 3 months of diabetes duration and in both SV129 and C57BL/6 genetic backgrounds. Deletion of p66Shc reversed nonhealing features, with increased collagen content and granulation tissue thickness, and reduced apoptosis and expression of c-myc and β-catenin. p66Shc deletion improved response to hind limb ischemia in diabetic mice in terms of tissue damage, capillary density, and perfusion. Migration of p66Shc−/− dermal fibroblasts in vitro was significantly faster than WT fibroblasts under both high glucose and hypoxia. CONCLUSIONS p66Shc is involved in the delayed wound-healing process in the setting of diabetes and ischemia. Thus, p66Shc may represent a potential therapeutic target against this disabling diabetes complication.


Diabetologia | 1990

Insulin regulation of glucose and lipid metabolism in massive obesity.

S. Del Prato; Giuliano Enzi; S. Vigili de Kreutzenberg; G. Lisato; A. Riccio; L. Maifreni; Elisabetta Iori; Francesco Zurlo; Giuseppe Sergi; Antonio Tiengo

SummaryEight obese patients and 12 normal individuals underwent a euglycaemic insulin clamp (20 and 40 mU · m2−1 · min−1) along with continuous infusion of 3-3H-glucose and 1-14C-palmitate and indirect calorimetry. Basal plasma glucose concentration (4.7±0.3 vs 4.4±0.2 mmol/l) was similar in the two groups, whereas hepatic glucose production was slightly higher in obese individuals (1.11±0.06 vs 0.84±0.05 mmol/min) in spite of higher plasma insulin levels (17±2 vs 6±1 mU/l; p<0.01). Insulin inhibition of hepatic glucose production was impaired in obese subjects. Glucose disposal by lean body mass was markedly reduced both at baseline (11.7±1.1 vs 15.6±0.6 μmol · kg−1 · min−1; p<0.05) and during clamp (15.0±1.1 vs 34.4±2.8 and 26.7±3.9 vs 62.2±2.8 μmol · kg−1 · min−1; p<0.01) Oxidative (12.2±1.1 vs 17.8±1 and 16.1±1.1 vs 51.1±1.7 μmol · kg−1 · min−1; p<0.05−0.002) and non-oxidative glucose metabolism (3.9±1.1 vs 15.0±2.8 and 12.8±3.3 vs 38.3±2.2 μmol · kg−1 · min−1; p<0.01−0.001) were impaired. Basal plasma concentrations of non-esterified fatty acids (635±75 vs 510±71 μmol/l) and blood glycerol (129±17 vs 56±5 μmol/l; p<0.01) were increased in obese patients. Following hyperinsulinaemia, plasma non-esterified fatty acids (244±79 vs 69±16 and 140±2 vs 36±10 μmol/l; p<0.01) and blood glycerol levels (79±20 vs 34±6 and 73±22 vs 29±5 μmol/l; p<0.01) remained higher in obese subjects. Baseline non-esterified fatty acid production rate per kg of fat body mass was significantly larger in normal weight subjects (37.7±6.7 vs 14.0±1.8 μmol/l; p<0.01) and insulin inhibition was reduced in obese patients (−41±9 vs −74±3 and −53±11 vs −82±3%; p<0.05). Basal plasma non-esterified fatty acid utilization by lean body mass was similar in the two groups (9.8±0.9 vs 8.8±2.0 μmol · kg−1 · min−1), whereas during clamp it remained higher in obese patients (6.0±1.2 vs 2.8±2.5 and 4.9±1.3 vs 1.5±0.6 μmol · kg−1 · min−1; p<0.1−0.05). Lipid oxidation was higher in obese individuals in spite of hyperinsulinaemia (3.7±0.3 vs 2.4±0.4 and 2.3±0.4 vs 0.9±0.3 μmol · kg−1 · min−1; p<0.05− 0.02). An inverse correlation was found between lipid oxidation and glucose oxidation (r=0.82 and 0.93; p<0.001) and glucose utilization (r=0.54 and 0.83; p<0.05−0.001) both in obese and control subjects. A correlation between lipid oxidation and non-oxidative glucose metabolism was present only in normal weight individuals (r=0.75; p<0.01). We conclude that in obesity all tissues (muscles, liver, and adipose tissue) are resistant to insulin action. Insulin resistance involves glucose as well as lipid metabolism.


The American Journal of Medicine | 1991

Effects of Chronic Alcohol Intake on Carbohydrate and Lipid Metabolism in Subjects with Type II (Non-Insulin-Dependent) Diabetes

Gianpaolo Ben; Luigi Gnudi; Alberto Maran; Alfonso Gigante; Elena Duner; Elisabetta Iori; Antonio Tiengo; Angelo Avogaro

PURPOSE To study the effects of chronic alcohol intake on carbohydrate and lipid metabolism in subjects with non-insulin-dependent (type II) diabetes (NIDDM). To also evaluate the effect of alcohol withdrawal on metabolic control. PATIENTS AND METHODS The study group consisted of 46 alcohol-consuming patients with NIDDM (NIDDM-B group), 35 non-alcohol-consuming patients with NIDDM (NIDDM group), and 40 normal control subjects. All patients were admitted to the hospital. Carbohydrate and lipid metabolism was assessed in these individuals immediately on admission to the hospital and during the following days. RESULTS In the NIDDM-B group, blood alcohol (ethyl alcohol) concentration was very low. However, chronic alcohol intake was associated with higher fasting and postprandial glucose concentrations and higher hemoglobin A1c. No significant differences were found in C-peptide levels. Moreover, higher concentrations of 3-hydroxybutyrate and free fatty acids were observed in the NIDDM-B group than in the NIDDM group. No differences were found in triglyceride concentrations, acid-base patterns, or electrolyte levels. The metabolic effects of alcohol completely waned after 3 days of complete withdrawal. CONCLUSION Chronic alcohol intake causes deterioration in metabolic control of persons with NIDDM. The effects induced by alcohol are completely reversed after a few days of withdrawal. Strict metabolic assessment is necessary when alcohol is an important constituent of the diet.


PLOS ONE | 2012

Glucose and Fatty Acid Metabolism in a 3 Tissue In-Vitro Model Challenged with Normo- and Hyperglycaemia

Elisabetta Iori; Bruna Vinci; Ellen Murphy; Maria Cristina Marescotti; Angelo Avogaro; Arti Ahluwalia

Nutrient balance in the human body is maintained through systemic signaling between different cells and tissues. Breaking down this circuitry to its most basic elements and reconstructing the metabolic network in-vitro provides a systematic method to gain a better understanding of how cross-talk between the organs contributes to the whole body metabolic profile and of the specific role of each different cell type. To this end, a 3-way connected culture of hepatocytes, adipose tissue and endothelial cells representing a simplified model of energetic substrate metabolism in the visceral region was developed. The 3-way culture was shown to maintain glucose and fatty acid homeostasis in-vitro. Subsequently it was challenged with insulin and high glucose concentrations to simulate hyperglycaemia. The aim was to study the capacity of the 3-way culture to maintain or restore normal circulating glucose concentrations in response to insulin and to investigate the effects these conditions on other metabolites involved in glucose and lipid metabolism. The results show that the system’s metabolic profile changes dramatically in the presence of high concentrations of glucose, and that these changes are modulated by the presence of insulin. Furthermore, we observed an increase in E-selectin levels in hyperglycaemic conditions and increased IL-6 concentrations in insulin-free-hyperglycaemic conditions, indicating, respectively, endothelial injury and proinflammatory stress in the challenged 3-way system.


Diabetes | 1997

Evidence for Acute Stimulation of Fibrinogen Production by Glucagon in Humans

Paolo Tessari; Elisabetta Iori; Monica Vettore; Michela Zanetti; Edward Kiwanuka; Gloria Davanzo; Rocco Barazzoni

Fibrinogen, an acute-phase protein, and glucagon, a stress hormone, are often elevated in many conditions of physical and metabolic stress, including uncontrolled diabetes. However, the possible mechanisms for this association are poorly known. We have studied the acute effects of selective hyperglucagonemia (raised from ∼200 to ∼350 pg/ml for 3 h) on fibrinogen fractional secretion rate (FSR) in eight normal subjects during infusion of somatostatin and replacement doses of insulin, glucagon, and growth hormone. Fibrinogen FSR was evaluated by precursor-product relationships using either Phe (n = 8) or Leu (n = 2) tracers. Hyperglucagonemia did not change either plasma Phe or Tyr specific activity. After hyperglucagonemia, fibrinogen FSR increased by ∼65% (from 12.9 ± 3.6 to 21.5 ± 6.1% per day, P < 0.025) using plasma Phe specific activity as the precursor pool. FSR increased by ∼80% (from 16.6 ± 4.8 to 29.4 ± 8.8% per day, P < 0.025) if plasma Phe specific activity was corrected for the ketoisocaproate/Leu enrichment (or specific activity) ratio to obtain an approximate estimate of intrahepatic Phe specific activity. FSR increased by ∼60% when using plasma Tyr specific activity as precursor pool (n = 8) (P < 0.05), as well as when using the Leu tracer precursorproduct relationship (n = 2). In conclusion, selective hyperglucagonemia for ∼3 h acutely stimulated fibrinogen FSR using a Phe tracer method. Thus, glucagon may be involved in the increase of fibrinogen concentration and FSR observed under stressed or pathologic conditions.


The Journal of Clinical Endocrinology and Metabolism | 2016

Acute Effects of Linagliptin on Progenitor Cells, Monocyte Phenotypes, and Soluble Mediators in Type 2 Diabetes

Gian Paolo Fadini; Benedetta Maria Bonora; Roberta Cappellari; Lisa Menegazzo; Monica Vedovato; Elisabetta Iori; Maria Cristina Marescotti; Mattia Albiero; Angelo Avogaro

CONTEXT Circulating cells, including endothelial progenitor cells (EPCs) and monocyte subtypes, are involved in diabetic complications. Modulation of these cells may mediate additional benefits of glucose-lowering medications. OBJECTIVE We assessed whether the dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin acutely modifies EPCs and monocyte subsets in patients with type 2 diabetes. DESIGN This was a randomized, crossover, placebo-controlled trial. SETTING The study was conducted at a tertiary referral diabetes outpatient clinic. PATIENTS Forty-six type 2 diabetes patients with (n = 18) or without (n = 28) chronic kidney disease (CKD) participated in the study. INTERVENTION Intervention included a 4-day treatment with linagliptin 5 mg or placebo during two arms separated by a 2-week washout. MAIN OUTCOME MEASURES Before and after each treatment, we determined the levels of circulating progenitor cells (CD34, CD133, KDR) and monocyte subtypes (CD14/CD16, chemokine and scavenger receptors) and the concentrations of soluble mediators. RESULTS Compared with placebo, linagliptin increased CD34(+)CD133(+) progenitor cells (placebo subtracted effect 40.4 ± 18.7/10(6); P = .036), CD34(+)KDR(+) EPCs (placebo subtracted effect 22.1 ± 10.2/10(6); P = .036), and CX3CR1(bright) monocytes (placebo subtracted effect 1.7 ± 0.8%; P = .032). Linagliptin abated DPP-4 activity by greater than 50%, significantly increased active glucagon-like peptide-1 and stromal cell-derived factor-1α, and reduced monocyte chemotactic protein-1, CCL22, and IL-12. Patients with CKD, as compared with those without, had lower baseline CD133(+) and CD34(+)CD133(+) cells and had borderline reduced CD34(+) and CD34(+)KDR(+) cells. The effects of linagliptin on progenitor cells and monocyte subtypes were similar in patients with or without CKD. Fasting plasma glucose, triglycerides and free fatty acids were unaffected. CONCLUSIONS DPP-4 inhibition with linagliptin acutely increases putative vasculoregenerative and antiinflammatory cells. Direct effects of DPP-4 inhibition may be important to lower vascular risk in diabetes, especially in the presence of CKD.


Diabetes | 1996

Hyperglucagonemia stimulates phenylalanine oxidation in humans

Paolo Tessari; S. Inchiostro; Rocco Barazzoni; Michela Zanetti; Monica Vettore; Gianni Biolo; Elisabetta Iori; Edward Kiwanuka; Antonio Tiengo

Glucagon stimulates in vitro liver phenylalanine (Phe) degradation, thus inducing net protein catabolism. Whether these effects occur also in vivo in humans is not known. Therefore, we studied the effects of physiological hyperglucagonemia on Phe rate of appearance (Rα), hydroxylation, and oxidation in seven normal volunteers during infusions of somatostatin with replacement doses of insulin and growth hormone. Steady-state Phe kinetics were evaluated using the l-[1-14C]Phe tracer both at the end of a 3-h basal glucagon replacement period (glucagon concentration: 212 ± 115 ng/l) and after a 3-h hormone infusion at the rate of ∼ 3 ng · kg−1 · min−1 (→654 ± 280 ng/l). Hyperglucagonemia did not change plasma Phe concentration and Ra but increased Phe oxidation by ∼ 30% (P < 0.01). Oxidation was also increased by ∼ 24% (P < 0.01) using plasma [14C]tyrosine (Tyr) specific activity as a precursor pool. Phe hydroxylation to Tyr estimated by assuming a fixed ratio of Tyr to Phe Rα (0.73) did not change. Nonhydroxylated Phe disposal decreased by ∼ 6% (P = 0.08). These data show that in humans in the postabsorptive state, hyperglucagonemia, with near maintenance of basal insulin and growth hormone concentrations, stimulates Phe oxidation but not Phe hydroxylation, suggesting a different regulation of these two Phe catabolic steps. Glucagon may also reduce Phe availability for protein synthesis.

Collaboration


Dive into the Elisabetta Iori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge