Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabetta Lapi is active.

Publication


Featured researches published by Elisabetta Lapi.


American Journal of Medical Genetics | 1999

Fragile X Premutation Is a Significant Risk Factor for Premature Ovarian Failure: The International Collaborative POF in Fragile X Study—Preliminary Data

Diane J. Allingham-Hawkins; Riyana Babul-Hirji; David Chitayat; Jeanette J. A. Holden; Kathy T. Yang; Carol D. Lee; R. Hudson; H. Gorwill; Sarah L. Nolin; Anne Glicksman; Edmund C. Jenkins; W. Ted Brown; Patricia N. Howard-Peebles; Cindy Becchi; Emilie Cummings; Lee Fallon; Suzanne Seitz; Susan H. Black; Angela M. Vianna-Morgante; Silvia S. Costa; Paulo A. Otto; Regina C. Mingroni-Netto; Anna Murray; J. Webb; F. MacSwinney; N. Dennis; Patricia A. Jacobs; Maria Syrrou; Ioannis Georgiou; Phillipos C. Patsalis

The preliminary results of an international collaborative study examining premature menopause in fragile X carriers are presented. A total of 760 women from fragile X families was surveyed about their fragile X carrier status and their menstrual and reproductive histories. Among the subjects, 395 carried a premutation, 128 carried a full mutation, and 237 were noncarriers. Sixty-three (16%) of the premutation carriers had experienced menopause prior to the age of 40 compared with none of the full mutation carriers and one (0.4%) of the controls. Based on these preliminary data, there is a significant association between fragile X premutation carrier status and premature menopause.


PLOS Genetics | 2011

Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome

Maria Clara Bonaglia; Roberto Giorda; Silvana Beri; Cristina De Agostini; Francesca Novara; Marco Fichera; Lucia Grillo; Ornella Galesi; Annalisa Vetro; Roberto Ciccone; Maria Teresa Bonati; Sabrina Giglio; Renzo Guerrini; Sara Osimani; Susan Marelli; Claudio Zucca; Rita Grasso; Renato Borgatti; Elisa Mani; Cristina Motta; Massimo Molteni; Corrado Romano; Donatella Greco; Santina Reitano; Anna Baroncini; Elisabetta Lapi; Antonella Cecconi; Giulia Arrigo; Maria Grazia Patricelli; Chiara Pantaleoni

In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS.


Journal of Medical Genetics | 2006

13q Deletion and central nervous system anomalies: further insights from karyotype–phenotype analyses of 14 patients

Lucia Ballarati; Elena Rossi; Maria Teresa Bonati; Stefania Gimelli; Paola Maraschio; Palma Finelli; Sabrina Giglio; Elisabetta Lapi; Maria Francesca Bedeschi; Silvana Guerneri; Giulia Arrigo; Maria Grazia Patricelli; Teresa Mattina; Oriana Guzzardi; Vanna Pecile; Gioacchino Scarano; Lidia Larizza; Orsetta Zuffardi; Daniela Giardino

Background: Chromosome 13q deletion is associated with varying phenotypes, which seem to depend on the location of the deleted segment. Although various attempts have been made to link the 13q deletion intervals to distinct phenotypes, there is still no acknowledged consensus correlation between the monosomy of distinct 13q regions and specific clinical features. Methods: 14 Italian patients carrying partial de novo 13q deletions were studied. Molecular–cytogenetic characterisation was carried out by means of array-comparative genomic hybridisation (array-CGH) or fluorescent in situ hybridisation (FISH). Results: Our 14 patients showed mental retardation ranging from profound–severe to moderate–mild: eight had central nervous system (CNS) anomalies, including neural tube defects (NTDs), six had eye abnormalities, nine had facial dysmorphisms and 10 had hand or feet anomalies. The size of the deleted regions varied from 4.2 to 75.7 Mb. Conclusion: This study is the first systematic molecular characterisation of de novo 13q deletions, and offers a karyotype–phenotype correlation based on detailed clinical studies and molecular determinations of the deleted regions. Analyses confirm that patients lacking the 13q32 band are the most seriously affected, and critical intervals have been preliminarily assigned for CNS malformations. Dose-sensitive genes proximal to q33.2 may be involved in NTDs. The minimal deletion interval associated with the Dandy–Walker malformation (DWM) was narrowed to the 13q32.2–33.2 region, in which the ZIC2 and ZIC5 genes proposed as underlying various CNS malformations are mapped.


Human Molecular Genetics | 2012

The KCNQ1OT1 Imprinting Control Region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases

Nicoletta Chiesa; Agostina De Crescenzo; Kankadeb Mishra; Lucia Perone; Massimo Carella; Orazio Palumbo; Alessandro Mussa; Angela Sparago; Flavia Cerrato; Silvia Russo; Elisabetta Lapi; Maria Vittoria Cubellis; Chandrasekhar Kanduri; Margherita Silengo; Andrea Riccio; Giovanni Battista Ferrero

A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver–Russell syndrome (SRS) and Beckwith–Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5′ 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5′ 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA.


American Journal of Medical Genetics | 1999

Premature ovarian failure (POF) and fragile X premutation females : From POF to fragile X carrier identification, from fragile X carrier diagnosis to POF association data

M.L. Giovannucci Uzielli; Silvia Guarducci; Elisabetta Lapi; A. Cecconi; Ugo Ricci; G. Ricotti; C. Biondi; B. Scarselli; F. Vieri; P. Scarnato; F. Gori; A. Sereni

Early menopause in the fragile X carriers has been well documented in several reports. All surveys demonstrated that 13-25% of fragile X carriers experienced premature ovarian failure (POF), defined as menopause before the age of 40 years. In 1995 we started screening two groups of subjects as a part of a Fragile X Research Program: 1) women previously diagnosed as fragile X carriers from the register of our center and 2) women with POF and without a family history of fragile X or other forms of mental retardation. In this study we report the preliminary data collected from 75 fragile X families; in 30 of them, POF was present in one or several subjects, all of whom had a fragile X premutation. None of the women with a full mutation experienced POF in our series of patients. We also identified 89 families without a family history of fragile X or mental retardation, and there were 108 subjects who experienced POF, of which 6.5% had a fragile X premutation. This is 70-fold higher than the background prevalence of fragile X premutation in the Italian population and suggests an association with POF. These data confirm the results of other surveys.


Neuromuscular Disorders | 2002

Mutations in the nebulin gene can cause severe congenital nemaline myopathy.

Carina Wallgren-Pettersson; Kati Donner; Caroline Sewry; Emilia Bijlsma; Martin Lammens; Kate Bushby; Maria Luisa Giovannucci Uzielli; Elisabetta Lapi; Sylvie Odent; Zuhal Akçören; Haluk Topaloglu; Katarina Pelin

Previously, we reported results indicating that nebulin was the gene causing the typical form of autosomal recessive nemaline (rod) myopathy. Here we describe the identification of mutations in the nebulin gene in seven offspring of five families affected by the severe congenital form of nemaline myopathy. One pregnancy was terminated on the grounds of foetal abnormality, while six affected infants died at ages ranging from the first day of life to 19 months. Only three of the six neonates were able to establish spontaneous respiration. Three had arthrogryposis. In three of the five families, the mutations were located in exon 184. These mutations are predicted to cause absence of the C-terminal part of nebulin.


Orphanet Journal of Rare Diseases | 2011

Mutation spectrum of MLL2 in a cohort of kabuki syndrome patients

Lucia Micale; Bartolomeo Augello; Carmela Fusco; Angelo Selicorni; Maria Nicla Loviglio; Margherita Silengo; Alexandre Reymond; Barbara Gumiero; Federica Zucchetti; Ester Valentina D'Addetta; E Belligni; Alessia Calcagnì; Maria Cristina Digilio; Bruno Dallapiccola; Francesca Faravelli; F. Forzano; Maria Accadia; Aldo Bonfante; Maurizio Clementi; Cecilia Daolio; Sofia Douzgou; Paola Ferrari; Rita Fischetto; Livia Garavelli; Elisabetta Lapi; Teresa Mattina; Daniela Melis; Maria Grazia Patricelli; Manuela Priolo; Paolo Prontera

BackgroundKabuki syndrome (Niikawa-Kuroki syndrome) is a rare, multiple congenital anomalies/mental retardation syndrome characterized by a peculiar face, short stature, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies, and immunological defects. Recently mutations in the histone methyl transferase MLL2 gene have been identified as its underlying cause.MethodsGenomic DNAs were extracted from 62 index patients clinically diagnosed as affected by Kabuki syndrome. Sanger sequencing was performed to analyze the whole coding region of the MLL2 gene including intron-exon junctions. The putative causal and possible functional effect of each nucleotide variant identified was estimated by in silico prediction tools.ResultsWe identified 45 patients with MLL2 nucleotide variants. 38 out of the 42 variants were never described before. Consistently with previous reports, the majority are nonsense or frameshift mutations predicted to generate a truncated polypeptide. We also identified 3 indel, 7 missense and 3 splice site.ConclusionsThis study emphasizes the relevance of mutational screening of the MLL2 gene among patients diagnosed with Kabuki syndrome. The identification of a large spectrum of MLL2 mutations possibly offers the opportunity to improve the actual knowledge on the clinical basis of this multiple congenital anomalies/mental retardation syndrome, design functional studies to understand the molecular mechanisms underlying this disease, establish genotype-phenotype correlations and improve clinical management.


Human Mutation | 2014

Molecular Analysis, Pathogenic Mechanisms, and Readthrough Therapy on a Large Cohort of Kabuki Syndrome Patients

Lucia Micale; Bartolomeo Augello; Claudia Maffeo; Angelo Selicorni; Federica Zucchetti; Carmela Fusco; Pasquelena De Nittis; Maria Teresa Pellico; Barbara Mandriani; Rita Fischetto; Loredana Boccone; Margherita Silengo; Elisa Biamino; Chiara Perria; Stefano Sotgiu; Gigliola Serra; Elisabetta Lapi; Marcella Neri; Alessandra Ferlini; Maria Luigia Cavaliere; Pietro Chiurazzi; Matteo Della Monica; Gioacchino Scarano; Francesca Faravelli; Paola Ferrari; Laura Mazzanti; Alba Pilotta; Maria Grazia Patricelli; Maria Francesca Bedeschi; Francesco Benedicenti

Kabuki syndrome (KS) is a multiple congenital anomalies syndrome characterized by characteristic facial features and varying degrees of mental retardation, caused by mutations in KMT2D/MLL2 and KDM6A/UTX genes. In this study, we performed a mutational screening on 303 Kabuki patients by direct sequencing, MLPA, and quantitative PCR identifying 133 KMT2D, 62 never described before, and four KDM6A mutations, three of them are novel. We found that a number of KMT2D truncating mutations result in mRNA degradation through the nonsense‐mediated mRNA decay, contributing to protein haploinsufficiency. Furthermore, we demonstrated that the reduction of KMT2D protein level in patients’ lymphoblastoid and skin fibroblast cell lines carrying KMT2D‐truncating mutations affects the expression levels of known KMT2D target genes. Finally, we hypothesized that the KS patients may benefit from a readthrough therapy to restore physiological levels of KMT2D and KDM6A proteins. To assess this, we performed a proof‐of‐principle study on 14 KMT2D and two KDM6A nonsense mutations using specific compounds that mediate translational readthrough and thereby stimulate the re‐expression of full‐length functional proteins. Our experimental data showed that both KMT2D and KDM6A nonsense mutations displayed high levels of readthrough in response to gentamicin treatment, paving the way to further studies aimed at eventually treating some Kabuki patients with readthrough inducers.


Clinical Endocrinology | 2005

Thyroid function and morphology in patients affected by Williams syndrome

Stefano Stagi; Giuseppe Bindi; Anna Neri; Elisabetta Lapi; Stefania Losi; Rita Jenuso; Roberto Salti; Francesco Chiarelli

Objective  To evaluate the prevalence of abnormalities of thyroid function and morphology in a cohort of patients with Williams syndrome (WS).


European Journal of Human Genetics | 2010

Identification and characterization of seven novel mutations of elastin gene in a cohort of patients affected by supravalvular aortic stenosis

Lucia Micale; Maria Giuseppina Turturo; Carmela Fusco; Bartolomeo Augello; Luis A Pérez Jurado; Claudia Izzi; Maria Cristina Digilio; Donatella Milani; Elisabetta Lapi; Leopoldo Zelante; Giuseppe Merla

Supravalvular aortic stenosis (SVAS) is a congenital narrowing of the ascending aorta, which can occur sporadically as an autosomal dominant condition or as one component of the Williams–Beuren syndrome, a complex developmental genomic disorder associated with cardiovascular, neurobehavioral, craniofacial, and metabolic abnormalities, caused by a microdeletion at 7q11.23. We report the identification of seven novel mutations within the elastin gene in 31 familial and sporadic cases of nonsyndromic SVAS. Five are frameshift mutations within the coding region of the ELN gene that result in premature stop codons (PTCs); the other two mutations abolish the donor splice site of introns 3 and 28, respectively, and are predicted to alter splicing efficiency resulting in the generation of a PTC within the same introns of the gene. In vitro analysis using minigenes and cycloheximide showed that some selected frameshift mutant alleles are substrates of nonsense-mediated mRNA decay (NMD), confirming that the functional haploinsufficiency of the ELN gene is the main pathomechanism underlying SVAS. Interestingly, molecular analysis on patient fibroblasts showed that the c.2044+5G>C mutant allele encodes for an aberrant shorter form of the elastin polypeptide that may hamper the normal assembly of elastin fibers in a dominant-negative manner.

Collaboration


Dive into the Elisabetta Lapi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Chiarelli

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge