Elisabetta Messaggio
Vita-Salute San Raffaele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elisabetta Messaggio.
Science Translational Medicine | 2010
Chiara Lanzani; Lorena Citterio; Nicola Glorioso; Paolo Manunta; Grazia Tripodi; Erika Salvi; Simona Delli Carpini; Mara Ferrandi; Elisabetta Messaggio; Jan A. Staessen; Daniele Cusi; Fabio Macciardi; Giuseppe Argiolas; Giovanni Valentini; Patrizia Ferrari; Giuseppe Bianchi
Five genetic variants that affect Na,K-ATPase interactions predict the blood pressure response to rostafuroxin but not to losartan and hydrochlorothiazide. Help for Hypertension As if changing its mind about how best to detoxify the body, the kidney first secretes a filtrate that contains almost everything in the blood but then recaptures much of it by pumping essential water, salts, and other molecules back in. The Na+, K+-ATPase, or sodium pump, recaptures sodium salts, and because Na+ is the prime determinant of extracellular fluid volume in the body, regulation of this pump controls blood pressure. Now a pair of papers describes how an antihypertension drug can correct abnormal sodium pumping and how this understanding of the drug’s mechanism points to a genetic signature that can predict whether a patient will respond to the drug. One cause of hypertension is a particular variant(s) of the protein adducin, a modulator of protein exposure on the cell surface that stimulates the sodium pump; a second is high concentrations of endogenous ouabain, an activating ligand for the pump. Both factors abnormally enhance the pump function through the triggering of the Src signaling pathway. Rostafuroxin, a derivative of digitoxigenin, acts as an antihypertensive agent by interfering with both of these ways to activate the sodium pump, preventing an increase in renal tubular Na+ transport and the resulting hypertension. In the first of the companion papers (Ferrandi et al.), the authors explore how rostafuroxin accomplishes its pressure-lowering feat. They show that the drug inhibits the Na+, K+ ATPase-Src-EGFR-ERK signaling activated by mutant adducin or ouabain, normalizing renal cell sodium transport, in two different rodent models of hypertension and in human cells. Upon closer examination of rostafurotoxin’s effects on Src-related phosphorylation in vitro, it became clear that the drug disrupts the ability of the variant adducin and the oubain-bound sodium pump to bind and activate Src at its SH2 domain. In the second of the companion papers (Lanzani et al.), the authors apply these results to patients by examining genetic variants that control the mechanisms of hypertension explored in the first paper. Lanzani et al. inspected genetic alterations in genes that encode enzymes that control ouabain synthesis and transport as well as two variants of adducin. They then tested the ability of these genetic variants to predict the response to rostafuroxin in a group of never-before treated patients with hypertension. Individuals who carried certain combinations of these genetic variants responded well to rostofuroxin, displaying a mean drop in the placebo-corrected blood pressure of about 14 mmHg, a clinically meaningful value. The same genetic signature did not predict the blood pressure response to other antihypertensive drugs with different mechanisms of action. The authors suggest that this genetic signature may exist in about a quarter of hypertensive patients. Finally, rostfuroxin may do more than lower blood pressure. Organ damage is known to be a downstream effect of an overactive Src signaling pathway—one of the byproducts of the hypertension mechanisms studied in this pair of papers. Because rostafuroxin interferes with Src signaling, the drug may curb the secondary damage to the heart, kidney, and brain caused by high blood pressure. Thus the kidney’s seemingly schizophrenic filtering actually represents a multilevel, fine-tuned control of the sodium pump as a means of managing blood pressure. Rostafuroxin can selectively correct hypertension in patients whose pumping mechanism is out of kilter, an advance toward personalized treatment of high blood pressure. Twenty years of genetic studies have not contributed to improvement in the clinical management of primary arterial hypertension. Genetic heterogeneity, epistatic-environmental-biological interactions, and the pathophysiological complexity of hypertension have hampered the clinical application of genetic findings. In the companion article, we furnished data from rodents and human cells demonstrating two hypertension-triggering mechanisms—variants of adducin and elevated concentrations of endogenous ouabain (within a particular range)—and their selective inhibition by the drug rostafuroxin. Here, we have investigated the relationship between variants of genes encoding enzymes for ouabain synthesis [LSS (lanosterol synthase) and HSD3B1 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 1)], ouabain transport {MDR1/ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1]}, and adducin activity [ADD1 (adducin 1) and ADD3], and the responses to antihypertensive medications. We determined the presence of these variants in newly recruited, never-treated patients. The genetic profile defined by these variants predicted the antihypertensive effect of rostafuroxin (a mean placebo-corrected systolic blood pressure fall of 14 millimeters of mercury) but not that of losartan or hydrochlorothiazide. The magnitude of the rostafuroxin antihypertensive effect was twice that of antihypertensive drugs recently tested in phase 2 clinical trials. One-quarter of patients with primary hypertension display these variants of adducin or concentrations of endogenous ouabain and would be expected to respond to therapy with rostafuroxin. Because the mechanisms that are inhibited by rostafuroxin also underlie hypertension-related organ damage, this drug may also reduce the cardiovascular risk in these patients beyond that expected by the reduction in systolic blood pressure alone.
Hypertension | 2001
Paolo Manunta; Elisabetta Messaggio; Cinzia Ballabeni; Maria Teresa Sciarrone; Chiara Lanzani; Mara Ferrandi; John M. Hamlyn; Daniele Cusi; Ferruccio Galletti; Giuseppe Bianchi
Abstract—An ouabain-like factor has been implicated repeatedly in salt-sensitive hypertension as a natriuretic agent. However, the response of plasma ouabain-like factor to acute and chronic variation of body sodium is unclear. We studied 138 patients with essential hypertension who underwent an acute volume expansion/contraction maneuver (2 days) and 20 patients who entered a blind randomized crossover design involving chronically controlled sodium intake and depletion (170 to 70 mmol/d; 2 weeks each period). In both studies, plasma levels of ouabain-like factor were higher during sodium depletion (acute: 338.8±17.4 and 402.7±22.8 pmol/L for baseline and low sodium, respectively, P <0.01; chronic: 320.4±32.0 versus 481.0±48.1 pmol/L, P =0.01). No significant change in plasma ouabain-like factor was observed after a 2-hour saline infusion (333.4±23.9 pmol/L) or controlled sodium (402.1±34.9 pmol/L). When patients were divided into salt-sensitive or salt-resistant groups, no differences in plasma ouabain-like factor were observed in the 2 groups at baseline or in response to the 2 protocols: salt resistant (n=69, 340.1±25.9 pmol/L) versus salt sensitive (n=69, 337.4±23.6 pmol/L) and chronic salt resistant (n=11, 336.0±53.2) versus salt sensitive (n=9, 301.1±331.4 pmol/L). However, circulating ouabain-like factor was increased by sodium depletion in both groups. These results demonstrate that circulating ouabain-like factor is raised specifically by maneuvers that promote the loss of body sodium. Acute expansion of body fluids with isotonic saline is not a stimulus to plasma ouabain-like factor. Moreover, basal levels of plasma ouabain-like factor do not differ among patients with salt-sensitive or salt-resistant hypertension. Taken together, these new results suggest that ouabain-like factor is involved in the adaptation of humans to sodium depletion and argue against the hypothesis that ouabain-like factor is a natriuretic hormone.
Journal of Hypertension | 2005
Chiara Lanzani; Lorena Citterio; Maria Jankaricova; M. Teresa Sciarrone; Cristina Barlassina; Stefania Fattori; Elisabetta Messaggio; Clelia Di Serio; Laura Zagato; Daniele Cusi; John M. Hamlyn; Alessandra Stella; Giuseppe Bianchi; Paolo Manunta
Objective In both humans and rats, polymorphisms of the alpha adducin (ADD1) gene are involved in renal sodium handling, essential hypertension and some of its organ complications. Adducin functions within cells as a heterodimer composed of various combinations of three subunits that are coded by three genes (ADD1, 2, 3) each located on a different chromosome. Design These characteristics provide the biochemical basis for investigating epistatic interactions among these loci. Methods We examined the three adducin gene polymorphisms and their association with ambulatory blood pressure (ABPM) and with plasma levels of renin activity (PRA), endogenous ouabain (EO), in 512 newly discovered and never-treated hypertensive patients. Results Relative to carriers of the wild type (Gly/Gly) ADD1 gene, patients carrying the mutated Trp ADD1 allele had higher blood pressure (systolic blood pressure (SBP) 143.2 ± 1.0 versus 140.6 ± 0.6 mmHg P = 0.027 and diastolic blood pressure (DBP) 94.2 ± 0.77 versus 92.3 ± 0.5 mmHg, P = 0.03), lower PRA and EO, consistent with the hypothesis of the renal sodium retaining effect of the Trp allele. Polymorphisms in the ADD2 and ADD3 genes taken alone were not associated with these variables. However, the differences in SBP and DBP between the two ADD1 genotypes were greatest in carriers of the ADD3 G allele (around + 8 mmHg). The significance of the interaction between ADD1 and ADD3 ranged between P = 0.020 to P = 0.006 according to the genetic model applied. Conclusions The interaction of ADD1 and ADD3 gene variants in humans is statistically associated with variation in blood pressure, suggesting the presence of epistatic effects among these loci.
PLOS ONE | 2011
Lorena Citterio; Marco Simonini; Laura Zagato; Erika Salvi; Simona Delli Carpini; Chiara Lanzani; Elisabetta Messaggio; Nunzia Casamassima; Francesca Frau; Francesca D'Avila; Daniele Cusi; Cristina Barlassina; Paolo Manunta
The importance of excess salt intake in the pathogenesis of hypertension is widely recognized. Blood pressure is controlled primarily by salt and water balance because of the infinite gain property of the kidney to rapidly eliminate excess fluid and salt. Up to fifty percent of patients with essential hypertension are salt-sensitive, as manifested by a rise in blood pressure with salt loading. We conducted a two-stage genetic analysis in hypertensive patients very accurately phenotyped for their salt-sensitivity. All newly discovered never treated before, essential hypertensives underwent an acute salt load to monitor the simultaneous changes in blood pressure and renal sodium excretion. The first stage consisted in an association analysis of genotyping data derived from genome-wide array on 329 subjects. Principal Component Analysis demonstrated that this population was homogenous. Among the strongest results, we detected a cluster of SNPs located in the first introns of PRKG1 gene (rs7897633, p = 2.34E-05) associated with variation in diastolic blood pressure after acute salt load. We further focused on two genetic loci, SLC24A3 and SLC8A1 (plasma membrane sodium/calcium exchange proteins, NCKX3 and NCX1, respectively) with a functional relationship with the previous gene and associated to variations in systolic blood pressure (the imputed rs3790261, p = 4.55E-06; and rs434082, p = 4.7E-03). In stage 2, we characterized 159 more patients for the SNPs in PRKG1, SLC24A3 and SLC8A1. Combined analysis showed an epistatic interaction of SNPs in SLC24A3 and SLC8A1 on the pressure-natriuresis (p interaction = 1.55E-04, p model = 3.35E-05), supporting their pathophysiological link in cellular calcium homeostasis. In conclusions, these findings point to a clear association between body sodium-blood pressure relations and molecules modulating the contractile state of vascular cells through an increase in cytoplasmic calcium concentration.
European Journal of Heart Failure | 2006
Maria Vittoria Pitzalis; John M. Hamlyn; Elisabetta Messaggio; Massimo Iacoviello; Cinzia Forleo; Roberta Romito; Elisabetta De Tommasi; Paolo Rizzon; Giuseppe Bianchi; Paolo Manunta
Increased circulating levels of endogenous ouabain (EO) have been observed in some heart failure patients, but their long term clinical significance is unknown. This study investigated the prognostic value of EO for worsening heart failure among 140 optimally treated patients (age 50±14 years; 104 male; NYHA class 1.9±0.7) with idiopathic dilated cardiomyopathy. Plasma EO was determined by RIA and by liquid chromatography mass spectrometry, values were linearly correlated (r=0.89) in regression analysis. During follow‐up (13±5 months), heart failure progression was defined as worsening clinical condition leading to one or more of the following: sustained increase in conventional therapies, hospitalization, cardiac transplant, or death. NYHA functional class, age, LVEF, peak VO2 and plasma levels of EO were predictive for heart failure progression. Heart failure worsened 1.5 fold (HR: 1.005; 95% CI: 1.001—1.007; p<0.01) for each 100 pmol/L increase in plasma EO. Moreover, those patients with higher plasma EO values had an odds ratio of 5.417 (95% CI: 2.044—14.355; p<0.001) for heart failure progression. Following multivariate analysis, LVEF, NYHA class and plasma EO remained significantly linked with clinical events. This study provides the first evidence that circulating EO is a novel, independent and incremental marker that predicts the progression of heart failure.
Critical Care Medicine | 2013
Elena Bignami; Nunzia Casamassima; Elena Frati; Chiara Lanzani; Laura Corno; Ottavio Alfieri; Stephen S. Gottlieb; Marco Simonini; Keyur B. Shah; Anna Mizzi; Elisabetta Messaggio; Alberto Zangrillo; Mara Ferrandi; Patrizia Ferrari; Giuseppe Bianchi; John M. Hamlyn; Paolo Manunta
Objectives:Acute kidney injury is a frequent complication of cardiac surgery and increases morbidity and mortality. As preoperative biomarkers predicting the development of acute kidney injury are not available, we have tested the hypothesis that preoperative plasma levels of endogenous ouabain may function as this type of biomarker. Rationale and Design:Endogenous ouabain is an adrenal stress hormone associated with adverse cardiovascular outcomes. Its involvement in acute kidney injury is unknown. With studies in patients and animal settings, including isolated podocytes, we tested the above mentioned hypothesis. Patients:Preoperative endogenous ouabain was measured in 407 patients admitted for elective cardiac surgery and in a validation population of 219 other patients. We also studied the effect of prolonged elevations of circulating exogenous ouabain on renal parameters in rats and the influence of ouabain on podocyte proteins both “in vivo” and “in vitro.” Main Results:In the first group of patients, acute kidney injury (2.8%, 8.3%, 20.3%, p < 0.001) and ICU stay (1.4±0.38, 1.7±0.41, 2.4±0.59 days, p = 0.014) increased with each incremental preoperative endogenous ouabain tertile. In a linear regression analysis, the circulating endogenous ouabain value before surgery was the strongest predictor of acute kidney injury. In the validation cohort, acute kidney injury (0%, 5.9%, 8.2%, p < 0.0001) and ICU stay (1.2±0.09, 1.4±0.23, 2.2±0.77 days, p = 0.003) increased with the preoperative endogenous ouabain tertile. Values for preoperative endogenous ouabain significantly improved (area under curve: 0.85) risk prediction over the clinical score alone as measured by integrate discrimination improvement and net reclassification improvement. Finally, in the rat model, elevated circulating ouabain reduced creatinine clearance (–18%, p < 0.05), increased urinary protein excretion (+ 54%, p < 0.05), and reduced expression of podocyte nephrin (–29%, p < 0.01). This last finding was replicated ex vivo by incubating podocyte primary cell cultures with low-dose ouabain. Conclusions:Preoperative plasma endogenous ouabain levels are powerful biomarkers of acute kidney injury and postoperative complications and may be a direct cause of podocyte damage.
Journal of Hypertension | 2005
Paolo Manunta; Massimo Iacoviello; Cinzia Forleo; Elisabetta Messaggio; John M. Hamlyn; Katia Lucarelli; Pietro Guida; Roberta Romito; Elisabetta De Tommasi; Giuseppe Bianchi; Paolo Rizzon; Maria Vittoria Pitzalis
Objective Impaired diastolic function and left ventricular hypertrophy can occur early in the natural history of essential hypertension. High circulating levels of endogenous ouabain (EO) have been described in essential hypertension and have also been associated with left ventricular hypertrophy. The aim of this study was to investigate whether these cardiac modifications are related to plasma EO levels in the offspring of hypertensive families. Methods The study involved 41 subjects with (FAM+) and 45 subjects without (FAM−) a family history of hypertension. Arterial blood pressure, left ventricular geometry and function, and plasma EO levels were measured in each subject. Results Plasma EO levels were higher in the FAM+ subjects (221.5 ± 10.95 versus 179.6 ± 9.58 pmol/l, P = 0.004), and directly correlated with both systolic (r = 0.417, P < 0.0001) and diastolic blood pressure (r = 0.333, P = 0.002). Plasma EO was inversely related to an index of cardiac diastolic function determined as the ratio between the early and late peak flow velocity (r = −0.286, P = 0.012) and isovolumetric relaxation time (IVRT) (r = 0.32, P = 0.003). The IVRT was also significantly higher in FAM+, correlated with the IVRT (r = 0.32, P = 0.003). The IVRT was also significantly higher in FAM+, whereas the other echocardiographic parameters were similar to FAM−. Conclusions Among the offspring of families with a positive history of hypertension, circulating EO levels and blood pressure are increased. Plasma EO levels are related to alterations of some indexes of diastolic heart function in these individuals.
American Journal of Hypertension | 2009
Grazia Tripodi; Lorena Citterio; Tatiana Kouznetsova; Chiara Lanzani; Monica Florio; Rossana Modica; Elisabetta Messaggio; John M. Hamlyn; Laura Zagato; Giuseppe Bianchi; Jan A. Staessen; Paolo Manunta
BACKGROUND Endogenous ouabain (EO) has been linked with long-term changes in sodium balance and cardiovascular structure and function. The biosynthesis of EO involves, cholesterol side-chain cleavage (CYP11A1), 3-beta-hydroxysteroid dehydrogenase (HSD3B) with sequential metabolism of pregnenolone and progesterone. Furthermore, the renal excretion of cardiac glycosides is mediated by the organic anion transporter (SLCO4C1) at the basolateral membrane and the P-glycoprotein (PGP) (encoded by MDR1) at the apical membrane of the nephron. METHODS Average 24-h ambulatory blood pressures were recorded in 729 untreated essential hypertensives. Aldosterone (Aldo), EO, urinary Na+, and K+ excretions were determined. Single-nucleotide polymorphism (SNP) and haplotype-based association study was performed with a total of 26 informative SNPs. RESULTS Plasma EO was significantly directly related to both day (r = 0.131, P < 0.01) and nighttime diastolic blood pressure (DBP) (r = 0.143, P < 0.01), and remained significantly related after correction for confounders (sex, body mass index, age). Genotype analysis for EO levels and daytime DBP gave significant results for CYP11A1 rs11638442 and MDR1 rs1045642 (T/C Ile1145) in which the minor allele tracked with higher EO levels (T/T 210.3 (147-272) vs. C/C 270.7 (193-366) pmol/l, P < 0.001). Association was found between HSD3B1 polymorphisms and/or haplotypes with blood pressure (systolic blood pressure (SBP) 140.3 (11.7) vs. 143.8 (11.2) mm Hg, P < 0.01) and plasma Aldo (P < 0.05). Haplotype-based analyses support the data of SNP analysis. CONCLUSIONS Among patients with essential hypertension, cholesterol side-chain cleavage and MDR1 loci are related to circulating EO and DBP, most likely by influencing EO synthesis and transmembrane transport, respectively. In contrast, variants in HSD3B1 are related with SBP probably via Aldo.
Journal of Hypertension | 2011
Paolo Manunta; John M. Hamlyn; Marco Simonini; Elisabetta Messaggio; Chiara Lanzani; Maria Bracale; Giuseppe Argiolas; Nunzia Casamassima; E. Brioni; Nicola Glorioso; Giuseppe Bianchi
Objective To evaluate whether the renin–angiotensin–aldosterone system (RAAS) and endogenous ouabain system differently affect renal Na handling and blood pressure. Methods Three hundred and one patients in whom we compared blood pressure, and renal Na tubular reabsorption in the basal condition and 2 h (T120) after saline infusion. Results Following multivariate-adjusted linear and quartiles analysis, baseline mean blood pressure (MBP) was significantly higher (113.7 ± 1.33 mmHg) in the fourth versus the first endogenous ouabain quartile (103.8 ± 1.04 mmHg) and the trend across the quartiles was highly significant (β = 0.23, P = 3.53e-04). In contrast, an inverse relationship was present in the renin activity (PRA) quartiles with MBP highest in the first (112.5 ± 1.26) and lowest in the fourth PRA quartile (107.6 ± 1.48, P = 0.039). Following an acute saline load, changes in MBP and the slope of the pressure–natriuresis relationship were inversely related across the PRA quartiles. The fractional excretion of sodium (FENa) showed a negative linear trend going from the first to the third endogenous ouabain quartiles (2.35 ± 0.17 and 1.90 ± 0.14%, P = 0.05). Patients in the fourth endogenous ouabain quartile (>323 pmol/l) showed increased FENa T120 (2.78 ± 0.18%, P < 0.01) and increased Na tubular rejection fraction (P = 0.007) after Na load. After the saline load, there was a biphasic relationship between plasma endogenous ouabain and FENa favoring Na retention at low endogenous ouabain and Na excretion at high endogenous ouabain levels. Conclusion The RAAS and endogenous ouabain system are two independent and complementary systems having an inverse (RAAS) or a direct (endogenous ouabain system) relationship with hemodynamic parameters.
Biochimica et Biophysica Acta | 2010
Paolo Manunta; Elisabetta Messaggio; Nunzia Casamassima; Guido Gatti; Simona Delli Carpini; Laura Zagato; John M. Hamlyn
The Na(+) pump and its Endogenous modulator Ouabain (EO) can be considered as an ancestral enzymatic system, conserved among species ranging from Drosophila to humans, related to Na handling. In this review, we examine how EO is linked with vascular function in hypertension and if it impacts the pathogenesis of heart and renal failure. Moreover, the molecular mechanism of endogenous ouabain-linked hypertension involves the sodium pump/sodium-calcium exchanger duet. Biosynthesis of EO occurs in adrenal glands and is under the control of angiotensin II, ACTH and epinephrine. Elevated concentrations of EO and in the sub-nanomolar concentration range were found to stimulate proliferation and differentiation of cardiac and smooth muscle cells. They may have a primary role in the development of cardiac dysfunction and failure. Experimental data suggest that the Na/K-ATPase α(2)-catalytic subunit causes EO-induced vasoconstriction. Finally, maneuvers that promote Na depletion, as diuretic therapy or reduced Na intake, raise the EO levels. Taken together, these findings suggest a key role for EO in body Na homeostasis.