Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabetta Moroni is active.

Publication


Featured researches published by Elisabetta Moroni.


Organic and Biomolecular Chemistry | 2011

Second generation of fucose-based DC-SIGN ligands : affinity improvement and specificity versus Langerin

Manuel Andreini; Daniela Doknic; Ieva Sutkeviciute; José J. Reina; Janxin Duan; Eric Chabrol; Michel Thépaut; Elisabetta Moroni; Fabio Doro; Laura Belvisi; Joerg Weiser; Javier Rojo; Franck Fieschi; Anna Bernardi

DC-SIGN and Langerin are two C-type lectins involved in the initial steps of HIV infections: the former acts as a viral attachment factor and facilitates viral invasion of the immune system, the latter has a protective effect. Potential antiviral compounds targeted against DC-SIGN were synthesized using a common fucosylamide anchor. Their DC-SIGN affinity was tested by SPR and found to be similar to that of the natural ligand Lewis-X (Le(X)). The compounds were also found to be selective for DC-SIGN and to interact only weakly with Langerin. These molecules are potentially useful therapeutic tools against sexually transmitted HIV infection.


Bioorganic & Medicinal Chemistry | 2009

Rational design, synthesis and characterization of potent, non-peptidic Smac mimics/XIAP inhibitors as proapoptotic agents for cancer therapy

Pierfausto Seneci; Aldo Bianchi; Cristina Battaglia; Laura Belvisi; Martino Bolognesi; Andrea Caprini; Federica Cossu; Elena de Franco; Marilenia De Matteo; Domenico Delia; Carmelo Drago; Amira Khaled; Daniele Lecis; Leonardo Manzoni; Moira Marizzoni; Eloise Mastrangelo; Mario Milani; Ilaria Motto; Elisabetta Moroni; Donatella Potenza; Vincenzo Rizzo; Federica Servida; Elisa Turlizzi; Maurizio Varrone; Francesca Vasile; Carlo Scolastico

Novel proapoptotic Smac mimics/IAPs inhibitors have been designed, synthesized and characterized. Computational models and structural studies (crystallography, NMR) have elucidated the SAR of this class of inhibitors, and have permitted further optimization of their properties. In vitro characterization (XIAP BIR3 and linker-BIR2-BIR3 binding, cytotox assays, early ADMET profiling) of the compounds has been performed, identifying one lead for further in vitro and in vivo evaluation.


Cancer Cell | 2015

Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy

Roberto Ronca; Arianna Giacomini; Emanuela Di Salle; Daniela Coltrini; Katiuscia Pagano; Laura Ragona; Sara Matarazzo; Sara Rezzola; Daniele Maiolo; Rubben Torella; Elisabetta Moroni; Roberta Mazzieri; Giulia Escobar; Marco Mor; Giorgio Colombo; Marco Presta

The fibroblast growth factor (FGF)/FGF receptor (FGFR) system plays a crucial role in cancer by affecting tumor growth, angiogenesis, drug resistance, and escape from anti-angiogenic anti-vascular endothelial growth factor therapy. The soluble pattern recognition receptor long-pentraxin 3 (PTX3) acts as a multi-FGF antagonist. Here we demonstrate that human PTX3 overexpression in transgenic mice driven by the Tie2 promoter inhibits tumor growth, angiogenesis, and metastasis in heterotopic, orthotopic, and autochthonous FGF-dependent tumor models. Using pharmacophore modeling of the interaction of a minimal PTX3-derived FGF-binding pentapeptide with FGF2, we identified a small-molecule chemical (NSC12) that acts as an extracellular FGF trap with significant implications in cancer therapy.


European Journal of Medicinal Chemistry | 2015

Design, Synthesis and Biological Evaluation of Biphenylamide Derivatives as Hsp90 C-terminal Inhibitors

Huiping Zhao; Gaurav Garg; Jinbo Zhao; Elisabetta Moroni; Antwan Girgis; Lucas S. Franco; Swapnil Singh; Giorgio Colombo; Brian S. J. Blagg

Modulation of Hsp90 C-terminal function represents a promising therapeutic approach for the treatment of cancer and neurodegenerative diseases. Current drug discovery efforts toward Hsp90 C-terminal inhibition focus on novobiocin, an antibiotic that was transformed into an Hsp90 inhibitor. Based on structural information obtained during the development of novobiocin derivatives and molecular docking studies, scaffolds containing a biphenyl moiety in lieu of the coumarin ring present in novobiocin were identified as new Hsp90 C-terminal inhibitors. Structure-activity relationship studies produced new derivatives that inhibit the proliferation of breast cancer cell lines at nanomolar concentrations, which corresponded directly with Hsp90 inhibition.


Journal of Chemical Information and Modeling | 2014

Exploiting conformational dynamics in drug discovery: design of C-terminal inhibitors of Hsp90 with improved activities

Elisabetta Moroni; Huiping Zhao; Brian S. J. Blagg; Giorgio Colombo

The interaction that occurs between molecules is a dynamic process that impacts both structural and conformational properties of the ligand and the ligand binding site. Herein, we investigate the dynamic cross-talk between a protein and the ligand as a source for new opportunities in ligand design. Analysis of the formation/disappearance of protein pockets produced in response to a first-generation inhibitor assisted in the identification of functional groups that could be introduced onto scaffolds to facilitate optimal binding, which allowed for increased binding with previously uncharacterized regions. MD simulations were used to elucidate primary changes that occur in the Hsp90 C-terminal binding pocket in the presence of first-generation ligands. This data was then used to design ligands that adapt to these receptor conformations, which provides access to an energy landscape that is not visible in a static model. The newly synthesized compounds demonstrated antiproliferative activity at ∼150 nM concentration. The method identified herein may be used to design chemical probes that provide additional information on structural variations of Hsp90 C-terminal binding site.


ACS Medicinal Chemistry Letters | 2014

Identification of a new scaffold for hsp90 C-terminal inhibition.

Huiping Zhao; Elisabetta Moroni; Giorgio Colombo; Brian S. J. Blagg

Inhibition of Hsp90 C-terminal function is an advantageous therapeutic paradigm for the treatment of cancer. Currently, the majority of Hsp90 C-terminal inhibitors are derived from novobiocin, a natural product traditionally used as an antibiotic. Assisted by molecular docking studies, a scaffold containing a biphenyl moiety in lieu of the coumarin ring system found in novobiocin was identified for development of new Hsp90 C-terminal inhibitors. Initial structure-activity studies led to derivatives that manifest good antiproliferative activity against two breast cancer cell lines through Hsp90 inhibition. This platform serves as a scaffold upon which new Hsp90 C-terminal inhibitors can be readily assembled for further investigation.


Scientific Reports | 2016

Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands.

Gerolamo Vettoretti; Elisabetta Moroni; Sara Sattin; Jiahui Tao; David A. Agard; Anna Bernardi; Giorgio Colombo

Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.


Proteins | 2005

MM/PBSA analysis of molecular dynamics simulations of bovine β‐lactoglobulin: Free energy gradients in conformational transitions?

Elisabetta Moroni; Marcin Wojciechowski; Maciej Baginski; Laura Ragona; Henriette Molinari

The pH‐driven opening and closure of β‐lactoglobulin EF loop, acting as a lid and closing the internal cavity of the protein, has been studied by molecular dynamics (MD) simulations and free energy calculations based on molecular mechanics/Poisson–Boltzmann (PB) solvent‐accessible surface area (MM/PBSA) methodology. The forms above and below the transition pH differ presumably only in the protonation state of residue Glu89. MM/PBSA calculations are able to reproduce qualitatively the thermodynamics of the transition. The analysis of MD simulations using a combination of MM/PBSA methodology and the colony energy approach is able to highlight the driving forces implied in the transition. The analysis suggests that global rearrangements take place before the equilibrium local conformation is reached. This conclusion may bear general relevance to conformational transitions in all lipocalins and proteins in general. Proteins 2005.


Bioorganic & Medicinal Chemistry | 2012

Dimeric Smac mimetics/IAP inhibitors as in vivo-active pro-apoptotic agents. Part II: Structural and biological characterization.

Daniele Lecis; Eloise Mastrangelo; Laura Belvisi; Martino Bolognesi; Monica Civera; Federica Cossu; Michelandrea De Cesare; Domenico Delia; Carmelo Drago; Giacomo Manenti; Leonardo Manzoni; Mario Milani; Elisabetta Moroni; Paola Perego; Donatella Potenza; Vincenzo Rizzo; Cinzia Scavullo; Carlo Scolastico; Federica Servida; Francesca Vasile; Pierfausto Seneci

Novel pro-apoptotic, homodimeric and heterodimeric Smac mimetics/IAPs inhibitors connected through head-head (8), tail-tail (9) or head-tail linkers (10), were biologically and structurally characterized. In vitro characterization (binding to BIR3 and linker-BIR2-BIR3 domains from XIAP and cIAP1, cytotoxicity assays) identified early leads from each dimer family. Computational models and structural studies (crystallography, NMR, gel filtration) partially rationalized the observed properties for each dimer class. Tail-tail dimer 9a was shown to be active in a breast and in an ovary tumor model, highlighting the potential of dimeric Smac mimetics/IAP inhibitors based on the N-AVPI-like 4-substituted 1-aza-2-oxobicyclo[5.3.0]decane scaffold as potential antineoplastic agents.


Journal of Molecular Biology | 2008

A Molecular Dynamics Study of the Interaction of d-Peptide Amyloid Inhibitors with Their Target Sequence Reveals a Potential Inhibitory Pharmacophore Conformation

Alexandra Esteras-Chopo; Giulia Morra; Elisabetta Moroni; Luis Serrano; Manuela López de la Paz; Giorgio Colombo

The self-assembly of soluble proteins and peptides into beta-sheet-rich oligomeric structures and insoluble fibrils is a hallmark of a large number of human diseases known as amyloid diseases. Drugs that are able to interfere with these processes may be able to prevent and/or cure these diseases. Experimental difficulties in the characterization of the intermediates involved in the amyloid formation process have seriously hampered the application of rational drug design approaches to the inhibition of amyloid formation and growth. Recently, short model peptide systems have proved useful in understanding the relationship between amino acid sequence and amyloid formation using both experimental and theoretical approaches. Moreover, short D-peptide sequences have been shown to specifically interfere with those short amyloid stretches in proteins, blocking oligomer formation or disassembling mature fibrils. With the aim of rationalizing which interactions drive the binding of inhibitors to nascent beta-sheet oligomers, in this study, we have carried out extensive molecular dynamics simulations of the interaction of selected d-peptide sequences with oligomers of the target model sequence STVIIE. Structural analysis of the simulations helped to identify the molecular determinants of an inhibitory core whose conformational and physicochemical properties are actually shared by nonpeptidic small-molecule inhibitors of amyloidogenesis. Selection of one of these small molecules and experimental validation against our model system proved that it was indeed an effective inhibitor of fibril formation by the STVIIE sequence, supporting theoretical predictions. We propose that the inhibitory determinants derived from this work be used as structural templates in the development of pharmacophore models for the identification of novel nonpeptidic inhibitors of aggregation.

Collaboration


Dive into the Elisabetta Moroni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Agard

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiahui Tao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulia Morra

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge