Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elise A. Oehler is active.

Publication


Featured researches published by Elise A. Oehler.


Circulation | 2011

Long-Term Cardiac pro-B-Type Natriuretic Peptide Gene Delivery Prevents the Development of Hypertensive Heart Disease in Spontaneously Hypertensive Rats

Alessandro Cataliotti; Jason M. Tonne; Diego Bellavia; Fernando L. Martin; Elise A. Oehler; Gerald E. Harders; Jarryd M. Campbell; Kaw Whye Peng; Stephen J. Russell; Lorenzo Malatino; John C. Burnett; Yasuhiro Ikeda

Background— Diastolic dysfunction associated with high blood pressure (BP) leads to cardiac remodeling and fibrosis and progression to congestive heart failure. B-type natriuretic peptide (BNP) has BP-lowering, antifibrotic, and antihypertrophic properties, which makes BNP an attractive agent for attenuating the adverse cardiac remodeling associated with hypertension. In the current study, we tested the effects of sustained cardiac proBNP gene delivery on BP, cardiac function, and remodeling in spontaneously hypertensive rats (SHR). Methods and Results— We used the myocardium-tropic adeno-associated virus serotype 9 (AAV9) vector to achieve continuously enhanced cardiac rat proBNP expression. In SHR, a single systemic administration of AAV9 vector allowed long-term cardiac BNP overexpression, resulting in reductions in systolic and diastolic BP for 9 months after injection. Left ventricular (LV) thickness, LV end-systolic dimensions, and LV mass were reduced, whereas ejection fraction was significantly increased, in BNP-treated compared with untreated SHR. Circumferential systolic strain and strain rate of the early phase of diastole were improved in BNP-treated compared with untreated SHR. Noncardiac overexpression of BNP via AAV2 vector was not associated with changes in BP and plasma BNP in SHR. Furthermore, normal Wistar rats injected with AAV9 proBNP vector showed significantly reduced heart weights 4 weeks after injection without BP reduction. Conclusions— AAV9 vector facilitates sustained cardiac proBNP overexpression and improves LV function in hypertensive heart disease. Long-term proBNP delivery improved both systolic and diastolic function. The effects on cardiac structure and function occurred independently of BP-lowering effects in normal Wistar rats.


Transplantation | 2012

Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts.

Christopher G.A. McGregor; Davide Ricci; Naoto Miyagi; Paul G. Stalboerger; Zeji Du; Elise A. Oehler; Henry D. Tazelaar; Guerard W. Byrne

Background. Transgenic expression of human complement regulatory proteins reduces the frequency of hyperacute rejection (HAR) in Gal-positive cardiac xenotransplantation. In this study, we examined the impact of human CD55 (hCD55) expression on a Gal knockout (GTKO) background using pig-to-primate heterotopic cardiac xenotransplantation. Methods. Cardiac xenotransplantation was performed with GTKO (group 1; n=6) and GTKO.hCD55 (group 2; n=5) donor pigs using similar immunosuppression. Cardiac biopsies were obtained 30 min after organ reperfusion. Rejection was characterized by histology and immunohistology. Intragraft gene expression, serum non-Gal antibody, and antibody recovered from rejected hearts were analyzed. Results. HAR of a GTKO heart was observed. Remaining grafts developed delayed xenograft rejection. Median survival was 21 and 28 days for groups 1 and 2, respectively. Vascular antibody deposition was uniformly detected 30 min after organ reperfusion and at explant. A higher frequency of vascular C5b deposition was seen in GTKO organs at explant. Serum non-Gal antibody, antibody recovered from the graft, and intragraft gene expression were similar between the groups. Conclusion. HAR of GTKO hearts without hCD55 may occur. Expression of hCD55 seemed to restrict local complement activation but did not improve graft survival. Chronic vascular antibody deposition with evidence of protracted endothelial cell activation was seen. These observations suggest that non-Gal antibody-induced chronic endothelial cell activation coupled to possible hemostatic incompatibilities may be the primary stimulus for delayed xenograft rejection of GTKO hearts. To avoid possible HAR, future clinical studies should use donors expressing human complement regulatory proteins in the GTKO background.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Experimental mild renal insufficiency mediates early cardiac apoptosis, fibrosis, and diastolic dysfunction: a kidney-heart connection

Fernando L. Martin; Paul M. McKie; Alessandro Cataliotti; S. Jeson Sangaralingham; Josef Korinek; Brenda K. Huntley; Elise A. Oehler; Gerald E. Harders; Tomoko Ichiki; Sarah Mangiafico; Karl A. Nath; Margaret M. Redfield; Horng H. Chen; John C. Burnett

Impaired renal function with loss of nephron number in chronic renal disease (CKD) is associated with increased cardiovascular morbidity and mortality. However, the structural and functional cardiac response to early and mild reduction in renal mass is poorly defined. We hypothesized that mild renal impairment produced by unilateral nephrectomy (UNX) would result in early cardiac fibrosis and impaired diastolic function, which would progress to a more global left ventricular (LV) dysfunction. Cardiorenal function and structure were assessed in rats at 4 and 16 wk following UNX or sham operation (Sham); (n = 10 per group). At 4 wk, blood pressure (BP), aldosterone, glomerular filtration rate (GFR), proteinuria, and plasma B-type natriuretic peptide (BNP) were not altered by UNX, representing a model of mild early CKD. However, UNX was associated with significantly greater LV myocardial fibrosis compared with Sham. Importantly, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining revealed increased apoptosis in the LV myocardium. Further, diastolic dysfunction, assessed by strain echocardiography, but with preserved LVEF, was observed. Changes in genes related to the TGF-β and apoptosis pathways in the LV myocardium were also observed. At 16 wk post-UNX, we observed persistent LV fibrosis and impairment in LV diastolic function. In addition, LV mass significantly increased, as did LVEDd, while there was a reduction in LVEF. Aldosterone, BNP, and proteinuria were increased, while GFR was decreased. The myocardial, structural, and functional alterations were associated with persistent changes in the TGF-β pathway and even more widespread changes in the LV apoptotic pathway. These studies demonstrate that mild renal insufficiency in the rat results in early cardiac fibrosis and impaired diastolic function, which progresses to more global LV remodeling and dysfunction. Thus, these studies importantly advance the concept of a kidney-heart connection in the control of myocardial structure and function.


Cardiovascular Pathology | 2012

Variable phenotype in murine transverse aortic constriction

Selma F. Mohammed; Jimmy Storlie; Elise A. Oehler; Lorna Bowen; Josef Korinek; Carolyn S.P. Lam; Robert D. Simari; John C. Burnett; Margaret M. Redfield

BACKGROUND In mice, transverse aortic constriction (TAC) is variably characterized as a model of pressure overload-induced hypertrophy (left ventricular [LV] hypertrophy, or LVH) or heart failure (HF). While commonly used, variability in the TAC model is poorly defined. The objectives of this study were to characterize the variability in the TAC model and to define a simple, noninvasive method of prospectively identifying mice with HF versus compensated LVH after TAC. METHODS Eight-week-old male C57BL/6J mice underwent TAC or sham and then echocardiography at 3 weeks post-TAC. A group of sham and TAC mice were euthanized after the 3-week echocardiogram, while the remainder underwent repeat echocardiography and were euthanized at 9 weeks post-TAC. The presence of TAC was assessed with two-dimensional echocardiography, anatomic aortic m-mode and color flow, and pulsed-wave Doppler examination of the transverse aorta (TA) and by LV systolic pressure (LVP). Trans-TAC pressure gradient was assessed invasively in a subset of mice. HF was defined as lung/body weight>upper limit in sham-operated mice. RESULTS As compared with sham, TAC mice had higher TA velocity, LVP and LV weight, and lower ejection fraction (EF) at 3 or 9 weeks post-TAC. Only a subset of TAC mice (28%) developed HF. As compared with compensated LVH, HF mice were characterized by similar TA velocity and higher percent TA stenosis, but lower LVP, higher LV weight, larger LV cavity, lower EF and stress-corrected midwall fiber shortening, and more fibrosis. Both EF and LV mass measured by echocardiography at 3 weeks post-TAC were predictive of the presence of HF at 3 or 9 weeks post-TAC. CONCLUSIONS In wild-type mice, TAC produces a variable cardiac phenotype. Marked abnormalities in LV mass and EF at echocardiography 3 weeks post-TAC identify mice with HF at autopsy. These data are relevant to appropriate design and interpretation of murine studies.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice

Carolyn M Roos; Michael A Hagler; Bin Zhang; Elise A. Oehler; Arman Arghami; Jordan D. Miller

The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD(+/+)) and manganese SOD heterozygous haploinsufficient (MnSOD(+/-)) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16(ink4a), a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD(+/+) and MnSOD(+/-) mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD(+/+) and MnSOD(+/-) mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD(+/+) mice but significantly impaired endothelial function in MnSOD(+/-) mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific.


Hypertension Research | 2013

Non-invasive assessment of cardiac function in a mouse model of renovascular hypertension

Federico Franchi; Bruce E. Knudsen; Elise A. Oehler; Stephen C. Textor; Lilach O. Lerman; Joseph P. Grande; Martin Rodriguez-Porcel

Hypertension continues to be a significant cause of morbidity and mortality, underscoring the need to better understand its early effects on the myocardium. The aim of this study is to determine the feasibility of in vivo longitudinal assessment of cardiac function, particularly diastolic function, in a mouse model of renovascular hypertension. Renovascular hypertension (RVH) was induced in 129S1/SvImJ male mice (n=9). To assess left ventricular (LV) systolic and diastolic function, M-mode echocardiography, pulsed-wave Doppler echocardiography and tissue Doppler imaging were performed at baseline, 2 and 4 weeks after the induction of renal artery stenosis. Myocardial tissue was collected to assess cellular morphology, fibrosis, extracellular matrix remodeling and inflammation ex vivo. RVH led to a significant increase in systolic blood pressure after 2 and 4 weeks (baseline: 99.26±1.09 mm Hg; 2 weeks: 140.90±7.64 mm Hg; 4 weeks: 147.52±5.91 mm Hg, P<0.05), resulting in a significant decrease in LV end-diastolic volume, associated with a significant elevation in ejection fraction and preserved cardiac output. Furthermore, the animals developed an abnormal diastolic function profile, with a shortening in the E velocity deceleration time as well as increases in the E/e′ and the E/A ratio. The ex vivo analysis revealed a significant increase in myocyte size and deposition of extracellular matrix. Non-invasive high-resolution ultrasonography allowed assessment of the diastolic function profile in a small animal model of renovascular hypertension.


Circulation | 2011

Long-Term Cardiac proBNP Gene Delivery Prevents the Development of Hypertensive Heart Disease in Spontaneously Hypertensive Rats

Alessandro Cataliotti; Jason M. Tonne; Diego Bellavia; Fernando L. Martin; Elise A. Oehler; Gerald E. Harders; Jarryd M. Campbell; Kaw-Whye Peng; Steve J. Russell; Lorenzo Malatino; John C. Burnett; Yasuhiro Ikeda

Background— Diastolic dysfunction associated with high blood pressure (BP) leads to cardiac remodeling and fibrosis and progression to congestive heart failure. B-type natriuretic peptide (BNP) has BP-lowering, antifibrotic, and antihypertrophic properties, which makes BNP an attractive agent for attenuating the adverse cardiac remodeling associated with hypertension. In the current study, we tested the effects of sustained cardiac proBNP gene delivery on BP, cardiac function, and remodeling in spontaneously hypertensive rats (SHR). Methods and Results— We used the myocardium-tropic adeno-associated virus serotype 9 (AAV9) vector to achieve continuously enhanced cardiac rat proBNP expression. In SHR, a single systemic administration of AAV9 vector allowed long-term cardiac BNP overexpression, resulting in reductions in systolic and diastolic BP for 9 months after injection. Left ventricular (LV) thickness, LV end-systolic dimensions, and LV mass were reduced, whereas ejection fraction was significantly increased, in BNP-treated compared with untreated SHR. Circumferential systolic strain and strain rate of the early phase of diastole were improved in BNP-treated compared with untreated SHR. Noncardiac overexpression of BNP via AAV2 vector was not associated with changes in BP and plasma BNP in SHR. Furthermore, normal Wistar rats injected with AAV9 proBNP vector showed significantly reduced heart weights 4 weeks after injection without BP reduction. Conclusions— AAV9 vector facilitates sustained cardiac proBNP overexpression and improves LV function in hypertensive heart disease. Long-term proBNP delivery improved both systolic and diastolic function. The effects on cardiac structure and function occurred independently of BP-lowering effects in normal Wistar rats.


Journal of the American College of Cardiology | 2017

NOVEL ECHOCARDIOGRAPHIC MEASUREMENTS DETECT INCREASED MYOCARDIAL STIFFNESS IN PATIENTS WITH SEVERE ORGANIC MITRAL REGURGITATION

Tais De Jesus; Mahmoud Alashry; Sorin V. Pislaru; Ratnasari Padang; Elise A. Oehler; Vuyisile T. Nkomo; Patricia A. Pellikka; Cristina Pislaru

Background: Chronic left ventricular (LV) volume overload in organic mitral regurgitation (MR) triggers altered contractile proteins and collagen synthesis leading to LV remodeling and ultimately LV dysfunction. Invasive studies demonstrated increased LV compliance but conflicting findings on


Circulation | 2011

Long-Term Cardiac pro-B-Type Natriuretic Peptide Gene Delivery Prevents the Development of Hypertensive Heart Disease in Spontaneously Hypertensive RatsClinical Perspective

Alessandro Cataliotti; Jason M. Tonne; Diego Bellavia; Fernando L. Martin; Elise A. Oehler; Gerald E. Harders; Jarryd M. Campbell; Kaw-Whye Peng; Stephen J. Russell; Lorenzo Malatino; John C. Burnett; Yasuhiro Ikeda

Background— Diastolic dysfunction associated with high blood pressure (BP) leads to cardiac remodeling and fibrosis and progression to congestive heart failure. B-type natriuretic peptide (BNP) has BP-lowering, antifibrotic, and antihypertrophic properties, which makes BNP an attractive agent for attenuating the adverse cardiac remodeling associated with hypertension. In the current study, we tested the effects of sustained cardiac proBNP gene delivery on BP, cardiac function, and remodeling in spontaneously hypertensive rats (SHR). Methods and Results— We used the myocardium-tropic adeno-associated virus serotype 9 (AAV9) vector to achieve continuously enhanced cardiac rat proBNP expression. In SHR, a single systemic administration of AAV9 vector allowed long-term cardiac BNP overexpression, resulting in reductions in systolic and diastolic BP for 9 months after injection. Left ventricular (LV) thickness, LV end-systolic dimensions, and LV mass were reduced, whereas ejection fraction was significantly increased, in BNP-treated compared with untreated SHR. Circumferential systolic strain and strain rate of the early phase of diastole were improved in BNP-treated compared with untreated SHR. Noncardiac overexpression of BNP via AAV2 vector was not associated with changes in BP and plasma BNP in SHR. Furthermore, normal Wistar rats injected with AAV9 proBNP vector showed significantly reduced heart weights 4 weeks after injection without BP reduction. Conclusions— AAV9 vector facilitates sustained cardiac proBNP overexpression and improves LV function in hypertensive heart disease. Long-term proBNP delivery improved both systolic and diastolic function. The effects on cardiac structure and function occurred independently of BP-lowering effects in normal Wistar rats.


BMC Pharmacology | 2011

Treatment with CBA-NP a novel chimeric natriuretic peptide attenuates cardiorenal fibrosis and improves diastolic dysfunction in diabetic rat model

Syed Ameenuddin; Elise A. Oehler; John C. Burnett; Horng H. Chen

Diabetes is a major risk factor for left ventricular dysfunction with cardiac and renal fibrosis. C-type natriuretic peptide (CNP) is a 22 amino-acid peptide produced mainly in the cardiac endothelium with potent cardiac unloading, anti-fibrotic and antihypertensive effects, but minimal renal actions. Using this knowledge we designed a natriuretic peptide CBA-NP by fusing a 6 AA sequence (KVLRRH) from BNP to the C-terminus and a 5 AA sequence (RMDRI) from ANP to the N-terminus of CNP to enhance beneficial renal effects while maintaining CNP’s inherent cardioprotective properties.

Collaboration


Dive into the Elise A. Oehler's collaboration.

Researchain Logo
Decentralizing Knowledge