Elise W. van der Jagt
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elise W. van der Jagt.
Circulation | 2010
Monica E. Kleinman; Leon Chameides; Stephen M. Schexnayder; Ricardo A. Samson; Mary Fran Hazinski; Dianne L. Atkins; Marc D. Berg; Allan R. de Caen; Ericka L. Fink; Eugene B. Freid; Robert W. Hickey; Bradley S. Marino; Vinay Nadkarni; Lester T. Proctor; Faiqa Qureshi; Kennith Sartorelli; Alexis A. Topjian; Elise W. van der Jagt; Arno Zaritsky
In contrast to adults, cardiac arrest in infants and children does not usually result from a primary cardiac cause. More often it is the terminal result of progressive respiratory failure or shock, also called an asphyxial arrest. Asphyxia begins with a variable period of systemic hypoxemia, hypercapnea, and acidosis, progresses to bradycardia and hypotension, and culminates with cardiac arrest.1 Another mechanism of cardiac arrest, ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT), is the initial cardiac rhythm in approximately 5% to 15% of pediatric in-hospital and out-of-hospital cardiac arrests;2,–,9 it is reported in up to 27% of pediatric in-hospital arrests at some point during the resuscitation.6 The incidence of VF/pulseless VT cardiac arrest rises with age.2,4 Increasing evidence suggests that sudden unexpected death in young people can be associated with genetic abnormalities in myocyte ion channels resulting in abnormalities in ion flow (see “Sudden Unexplained Deaths,” below). Since 2010 marks the 50th anniversary of the introduction of cardiopulmonary resuscitation (CPR),10 it seems appropriate to review the progressive improvement in outcome of pediatric resuscitation from cardiac arrest. Survival from in-hospital cardiac arrest in infants and children in the 1980s was around 9%.11,12 Approximately 20 years later, that figure had increased to 17%,13,14 and by 2006, to 27%.15,–,17 In contrast to those favorable results from in-hospital cardiac arrest, overall survival to discharge from out-of-hospital cardiac arrest in infants and children has not changed substantially in 20 years and remains at about 6% (3% for infants and 9% for children and adolescents).7,9 It is unclear why the improvement in outcome from in-hospital cardiac arrest has occurred, although earlier recognition and management of at-risk patients on general inpatient units …
Pediatrics | 2006
Dianne L. Atkins; Marc D. Berg; Robert A. Berg; Adnan T. Bhutta; Dominique Biarent; Robert Bingham; Dana Braner; Renato Carrera; Leon Chameides; Ashraf Coovadia; Allan R. de Caen; Douglas S. Diekema; Diana G. Fendya; Melinda L. Fiedor; Richard T. Fiser; Susan Fuchs; Mike Gerardi; Wiliam Hammill; George W. Hatch; Mary Fran Hazinski; Robert W. Hickey; John Kattwinkel; Monica E. Kleinman; Jesús López-Herce; Peter Morley; Marilyn C. Morris; Vinay Nadkarni; Jerry P. Nolan; Jeffrey Perlman; Lester T. Proctor
This publication presents the 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of the pediatric patient and the 2005 American Academy of Pediatrics/AHA guidelines for CPR and ECC of the neonate. The guidelines are based on the evidence evaluation from the 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations, hosted by the American Heart Association in Dallas, Texas, January 23–30, 2005. The “2005 AHA Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care” contain recommendations designed to improve survival from sudden cardiac arrest and acute life-threatening cardiopulmonary problems. The evidence evaluation process that was the basis for these guidelines was accomplished in collaboration with the International Liaison Committee on Resuscitation (ILCOR). The ILCOR process is described in more detail in the “International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.” The recommendations in the “2005 AHA Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care” confirm the safety and effectiveness of many approaches, acknowledge that other approaches may not be optimal, and recommend new treatments that have undergone evidence evaluation. These new recommendations do not imply that care involving the use of earlier guidelines is unsafe. In addition, it is important to note that these guidelines will not apply to all rescuers and all victims in all situations. The leader of a resuscitation attempt may need to adapt application of the guidelines to unique circumstances. The following are the major pediatric advanced life support changes in the 2005 guidelines: There is further caution about the use of endotracheal tubes. Laryngeal mask airways are acceptable when used by experienced providers. Cuffed endotracheal tubes may be used in infants (except newborns) and children in in-hospital settings provided that cuff inflation pressure is kept <20 cm H2O. Confirmation of tube placement requires clinical assessment and assessment of exhaled carbon dioxide (CO2); esophageal detector devices may be considered for use in children weighing >20 kg who have a perfusing rhythm. Correct placement must be verified when the tube is inserted, during transport, and whenever the patient is moved. During CPR with an advanced airway in place, rescuers will no longer perform “cycles” of CPR. Instead, the rescuer performing chest compressions will perform them continuously at a rate of 100/minute without pauses for ventilation. The rescuer providing ventilation will deliver 8 to 10 breaths per minute (1 breath approximately every 6–8 seconds). Timing of 1 shock, CPR, and drug administration during pulseless arrest has changed and now is identical to that for advanced cardiac life support. Routine use of high-dose epinephrine is not recommended. Lidocaine is de-emphasized, but it can be used for treatment of ventricular fibrillation/pulseless ventricular tachycardia if amiodarone is not available. Induced hypothermia (32–34°C for 12–24 hours) may be considered if the child remains comatose after resuscitation. Indications for the use of inodilators are mentioned in the postresuscitation section. Termination of resuscitative efforts is discussed. It is noted that intact survival has been reported following prolonged resuscitation and absence of spontaneous circulation despite 2 doses of epinephrine. The following are the major neonatal resuscitation changes in the 2005 guidelines: Supplementary oxygen is recommended whenever positive-pressure ventilation is indicated for resuscitation; free-flow oxygen should be administered to infants who are breathing but have central cyanosis. Although the standard approach to resuscitation is to use 100% oxygen, it is reasonable to begin resuscitation with an oxygen concentration of less than 100% or to start with no supplementary oxygen (ie, start with room air). If the clinician begins resuscitation with room air, it is recommended that supplementary oxygen be available to use if there is no appreciable improvement within 90 seconds after birth. In situations where supplementary oxygen is not readily available, positive-pressure ventilation should be administered with room air. Current recommendations no longer advise routine intrapartum oropharyngeal and nasopharyngeal suctioning for infants born to mothers with meconium staining of amniotic fluid. Endotracheal suctioning for infants who are not vigorous should be performed immediately after birth. A self-inflating bag, a flow-inflating bag, or a T-piece (a valved mechanical device designed to regulate pressure and limit flow) can be used to ventilate a newborn. An increase in heart rate is the primary sign of improved ventilation during resuscitation. Exhaled CO2 detection is the recommended primary technique to confirm correct endotracheal tube placement when a prompt increase in heart rate does not occur after intubation. The recommended intravenous (IV) epinephrine dose is 0.01 to 0.03 mg/kg per dose. Higher IV doses are not recommended, and IV administration is the preferred route. Although access is being obtained, administration of a higher dose (up to 0.1 mg/kg) through the endotracheal tube may be considered. It is possible to identify conditions associated with high mortality and poor outcome in which withholding resuscitative efforts may be considered reasonable, particularly when there has been the opportunity for parental agreement. The following guidelines must be interpreted according to current regional outcomes: When gestation, birth weight, or congenital anomalies are associated with almost certain early death and when unacceptably high morbidity is likely among the rare survivors, resuscitation is not indicated. Examples are provided in the guidelines. In conditions associated with a high rate of survival and acceptable morbidity, resuscitation is nearly always indicated. In conditions associated with uncertain prognosis in which survival is borderline, the morbidity rate is relatively high, and the anticipated burden to the child is high, parental desires concerning initiation of resuscitation should be supported. Infants without signs of life (no heartbeat and no respiratory effort) after 10 minutes of resuscitation show either a high mortality rate or severe neurodevelopmental disability. After 10 minutes of continuous and adequate resuscitative efforts, discontinuation of resuscitation may be justified if there are no signs of life.
Pediatrics | 2010
Monica E. Kleinman; Leon Chameides; Stephen M. Schexnayder; Ricardo A. Samson; Mary Fran Hazinski; Dianne L. Atkins; Marc D. Berg; Allan R. de Caen; Ericka L. Fink; Eugene B. Freid; Robert W. Hickey; Bradley S. Marino; Vinay Nadkarni; Lester T. Proctor; Faiqa Qureshi; Kennith Sartorelli; Alexis A. Topjian; Elise W. van der Jagt; Arno Zaritsky
For best survival and quality of life, pediatric basic life support (BLS) should be part of a community effort that includes prevention, early cardiopulmonary resuscitation (CPR), prompt access to the emergency response system, and rapid pediatric advanced life support (PALS), followed by integrated post–cardiac arrest care. These 5 links form the American Heart Association (AHA) pediatric Chain of Survival (Figure 1), the first 3 links of which constitute pediatric BLS. FIGURE 1. Pediatric Chain of Survival. Rapid and effective bystander CPR can be associated with successful return of spontaneous circulation (ROSC) and neurologically intact survival in children following out-of-hospital cardiac arrest.1,–,3 Bystander resuscitation may have the greatest impact for out-of-hospital respiratory arrest,4 because survival rates >70% have been reported with good neurologic outcome.5,6 Bystander resuscitation may also have substantial impact on survival from primary ventricular fibrillation (VF), because survival rates of 20% to 30% have been documented in children with sudden out-of-hospital witnessed VF.7 Overall about 6%8 of children who suffer an out-of-hospital cardiac arrest and 8% of those who receive prehospital emergency response resuscitation survive, but many suffer serious permanent brain injury as a result of their arrest.7,9,–,14 Out-of-hospital survival rates and neurological outcome can be improved with prompt bystander CPR,3,6,15,–,17 but only about one third to one half of infants and children who suffer cardiac arrest receive bystander CPR.3,9,12,18 Infants are less likely to survive out-of-hospital cardiac arrest (4%) than children (10%) or adolescents (13%), presumably because many infants included in the arrest figure are found dead after a substantial period of time, most from sudden infant death syndrome (SIDS).8 As in adults, survival is …
The New England Journal of Medicine | 2015
Frank W. Moler; Faye S. Silverstein; Richard Holubkov; Beth S. Slomine; James R. Christensen; Vinay Nadkarni; Kathleen L. Meert; Brittan Browning; Victoria L. Pemberton; Kent Page; Seetha Shankaran; Jamie Hutchison; Christopher J. L. Newth; Kimberly Statler Bennett; John T. Berger; Alexis A. Topjian; Jose A. Pineda; Joshua Koch; Charles L. Schleien; Heidi J. Dalton; George Ofori-Amanfo; Denise M. Goodman; Ericka L. Fink; Patrick S. McQuillen; Jerry J. Zimmerman; Neal J. Thomas; Elise W. van der Jagt; Melissa B. Porter; Michael T. Meyer; Rick Harrison
BACKGROUND Therapeutic hypothermia is recommended for comatose adults after witnessed out-of-hospital cardiac arrest, but data about this intervention in children are limited. METHODS We conducted this trial of two targeted temperature interventions at 38 childrens hospitals involving children who remained unconscious after out-of-hospital cardiac arrest. Within 6 hours after the return of circulation, comatose patients who were older than 2 days and younger than 18 years of age were randomly assigned to therapeutic hypothermia (target temperature, 33.0°C) or therapeutic normothermia (target temperature, 36.8°C). The primary efficacy outcome, survival at 12 months after cardiac arrest with a Vineland Adaptive Behavior Scales, second edition (VABS-II), score of 70 or higher (on a scale from 20 to 160, with higher scores indicating better function), was evaluated among patients with a VABS-II score of at least 70 before cardiac arrest. RESULTS A total of 295 patients underwent randomization. Among the 260 patients with data that could be evaluated and who had a VABS-II score of at least 70 before cardiac arrest, there was no significant difference in the primary outcome between the hypothermia group and the normothermia group (20% vs. 12%; relative likelihood, 1.54; 95% confidence interval [CI], 0.86 to 2.76; P=0.14). Among all the patients with data that could be evaluated, the change in the VABS-II score from baseline to 12 months was not significantly different (P=0.13) and 1-year survival was similar (38% in the hypothermia group vs. 29% in the normothermia group; relative likelihood, 1.29; 95% CI, 0.93 to 1.79; P=0.13). The groups had similar incidences of infection and serious arrhythmias, as well as similar use of blood products and 28-day mortality. CONCLUSIONS In comatose children who survived out-of-hospital cardiac arrest, therapeutic hypothermia, as compared with therapeutic normothermia, did not confer a significant benefit in survival with a good functional outcome at 1 year. (Funded by the National Heart, Lung, and Blood Institute and others; THAPCA-OH ClinicalTrials.gov number, NCT00878644.).
Pediatric Critical Care Medicine | 2009
Kathleen L. Meert; Amy E. Donaldson; Vinay Nadkarni; Kelly Tieves; Charles L. Schleien; Richard J. Brilli; Robert S. B. Clark; Donald H. Shaffner; Fiona H. Levy; Kimberly D. Statler; Heidi J. Dalton; Elise W. van der Jagt; Richard Hackbarth; Robert K. Pretzlaff; Lynn J. Hernan; J. Michael Dean; Frank W. Moler
Objectives: 1) To describe clinical characteristics, hospital courses, and outcomes of a cohort of children cared for within the Pediatric Emergency Care Applied Research Network who experienced in-hospital cardiac arrest with sustained return of circulation between July 1, 2003 and December 31, 2004, and 2) to identify factors associated with hospital mortality in this population. These data are required to prepare a randomized trial of therapeutic hypothermia on neurobehavioral outcomes in children after in-hospital cardiac arrest. Design: Retrospective cohort study. Setting: Fifteen children’s hospitals associated with Pediatric Emergency Care Applied Research Network. Patients: Patients between 1 day and 18 years of age who had cardiopulmonary resuscitation and received chest compressions for >1 min, and had a return of circulation for >20 mins. Interventions: None. Measurements and Main Results: A total of 353 patients met entry criteria; 172 (48.7%) survived to hospital discharge. Among survivors, 132 (76.7%) had good neurologic outcome documented by Pediatric Cerebral Performance Category scores. After adjustment for age, gender, and first documented cardiac arrest rhythm, variables available before and during the arrest that were independently associated with increased mortality included pre-existing hematologic, oncologic, or immunologic disorders, genetic or metabolic disorders, presence of an endotracheal tube before the arrest, and use of sodium bicarbonate during the arrest. Variables associated with decreased mortality included postoperative cardiopulmonary resuscitation. Extending the time frame to include variables available before, during, and within 12 hours following arrest, variables independently associated with increased mortality included the use of calcium during the arrest. Variables associated with decreased mortality included higher minimum blood pH and pupillary responsiveness. Conclusions: Many factors are associated with hospital mortality among children after in-hospital cardiac arrest and return of circulation. Such factors must be considered when designing a trial of therapeutic hypothermia after cardiac arrest in pediatric patients.
Circulation | 2004
Mary Fran Hazinski; David Markenson; Steven R. Neish; Mike Gerardi; Janis Hootman; Graham Nichol; Howard Taras; Robert J. Hickey; Robert E. O’Connor; Jerry Potts; Elise W. van der Jagt; Stuart Berger; Steve Schexnayder; Arthur Garson; Alidene Doherty; Suzanne Smith
This document introduces a public health initiative, the Medical Emergency Response Plan for Schools. This initiative will help schools prepare to respond to life-threatening medical emergencies in the first minutes before the arrival of emergency medical services (EMS) personnel. This statement is for healthcare providers, policymakers, school personnel, and community leaders. It summarizes essential information about life-threatening emergencies, including details about sudden cardiac arrest (SCA). This statement describes the components of an emergency response plan, the training of school personnel and students to respond to a life-threatening emergency, and the equipment required for this emergency response. Detailed information about SCA and cardiopulmonary resuscitation (CPR) and automated external defibrillator (AED) programs is provided to assist schools in prioritizing and preparing for emergencies to maximize the number of lives saved. Life-threatening emergencies can happen in any school at any time. These emergencies can be the result of preexisting health problems, violence, unintentional injuries, natural disasters, and toxins. In recent years, stories in the lay press have documented tragic premature deaths in schools from SCA, blunt trauma to the chest, firearm injuries, asthma, head injuries, drug overdose, allergic reactions, and heatstroke. School leaders should establish an emergency response plan to deal with life-threatening medical emergencies in addition to the emergency plan for tornados or fires. This statement has been endorsed by the following organizations: American Heart Association (AHA) Emergency Cardiovascular Care Committee, American Academy of Pediatrics, American College of Emergency Physicians, American National Red Cross, National Association of School Nurses, National Association of State EMS Directors, National Association of EMS Physicians, National Association of Emergency Medical Technicians, and the Program for School Preparedness and Planning, National Center for Disaster Preparedness, Columbia University Mailman School of Public Health. This statement was also reviewed by the Centers for Disease Control Division of School and Adolescent …
Circulation | 2015
Allan R. de Caen; Marc D. Berg; Leon Chameides; Cheryl K. Gooden; Robert W. Hickey; Halden F. Scott; Robert M. Sutton; Janice A. Tijssen; Alexis A. Topjian; Elise W. van der Jagt; Stephen M. Schexnayder; Ricardo A. Samson
Over the past 13 years, survival to discharge from pediatric in-hospital cardiac arrest (IHCA) has markedly improved. From 2001 to 2013, rates of return of spontaneous circulation (ROSC) from IHCA increased significantly from 39% to 77%, and survival to hospital discharge improved from 24% to 36% to 43% (Girotra et al1 and personal communication with Paul Chan, MD, MSc, April 3, 2015). In a single center, implementation of an intensive care unit (ICU)–based interdisciplinary debriefing program improved survival with favorable neurologic outcome from 29% to 50%.2 Furthermore, new data show that prolonged cardiopulmonary resuscitation (CPR) is not futile: 12% of patients receiving CPR in IHCA for more than 35 minutes survived to discharge, and 60% of the survivors had a favorable neurologic outcome.3 This improvement in survival rate from IHCA can be attributed to multiple factors, including emphasis on high-quality CPR and advances in post-resuscitation care. Over the past decade, the percent of cardiac arrests occurring in an ICU setting has increased (87% to 91% in 2000 to 2003 to 94% to 96% in 2004 to 2010).4 While rates of survival from pulseless electrical activity and asystole have increased, there has been no change in survival rates from in-hospital ventricular fibrillation (VF) or pulseless ventricular tachycardia (pVT). Conversely, survival from out-of-hospital cardiac arrest (OHCA) has not improved as dramatically over the past 5 years. Data from 11 US and Canadian hospital emergency medical service systems (the Resuscitation Outcomes Consortium) during 2005 to 2007 showed age-dependent discharge survival rates of 3.3% for infants (less than 1 year), 9.1% for children (1 to 11 years), and 8.9% for adolescents (12 to 19 years).5 More recently published data (through 2012) from this network demonstrate 8.3% survival to hospital discharge across all age groups, with 10.5% survival for children …
Critical Care Medicine | 2011
Frank W. Moler; Amy E. Donaldson; Kathleen L. Meert; Richard J. Brilli; Vinay Nadkarni; Donald H. Shaffner; Charles L. Schleien; Robert Clark; Heidi J. Dalton; Kimberly D. Statler; Kelly Tieves; Richard Hackbarth; Robert K. Pretzlaff; Elise W. van der Jagt; Jose A. Pineda; Lynn J. Hernan; J. Michael Dean
Objectives:To describe a large cohort of children with out-of-hospital cardiac arrest with return of circulation and to identify factors in the early postarrest period associated with survival. These objectives were for planning an interventional trial of therapeutic hypothermia after pediatric cardiac arrest. Methods:A retrospective cohort study was conducted at 15 Pediatric Emergency Care Applied Research Network clinical sites over an 18-month study period. All children from 1 day (24 hrs) to 18 yrs of age with out-of-hospital cardiac arrest and a history of at least 1 min of chest compressions with return of circulation for at least 20 mins were eligible. Measurements and Main Results:One hundred thirty-eight cases met study entry criteria; the overall mortality was 62% (85 of 138 cases). The event characteristics associated with increased survival were as follows: weekend arrests, cardiopulmonary resuscitation not ongoing at hospital arrival, arrest rhythm not asystole, no atropine or NaHCO3, fewer epinephrine doses, shorter duration of cardiopulmonary resuscitation, and drowning or asphyxial arrest event. For the 0- to 12-hr postarrest return-of-circulation period, absence of any vasopressor or inotropic agent (dopamine, epinephrine) use, higher lowest temperature recorded, greater lowest pH, lower lactate, lower maximum glucose, and normal pupillary responses were all associated with survival. A multivariate logistic model of variables available at the time of arrest, which controlled for gender, age, race, and asystole or ventricular fibrillation/ventricular tachycardia anytime during the arrest, found the administration of atropine and epinephrine to be associated with mortality. A second model using additional information available up to 12 hrs after return of circulation found 1) preexisting lung or airway disease; 2) an etiology of arrest drowning or asphyxia; 3) higher pH, and 4) bilateral reactive pupils to be associated with lower mortality. Receiving more than three doses of epinephrine was associated with poor outcome in 96% (44 of 46) of cases. Conclusions:Multiple factors were identified as associated with survival after out-of-hospital pediatric cardiac arrest with the return of circulation. Additional information available within a few hours after the return of circulation may diminish outcome associations of factors available at earlier times in regression models. These factors should be considered in the design of future interventional trials aimed to improve outcome after pediatric cardiac arrest.
Critical Care Medicine | 2009
Frank W. Moler; Kathleen L. Meert; Amy E. Donaldson; Vinay Nadkarni; Richard J. Brilli; Heidi J. Dalton; Robert S. B. Clark; Donald H. Shaffner; Charles L. Schleien; Kimberly D. Statler; Kelly Tieves; Richard Hackbarth; Robert K. Pretzlaff; Elise W. van der Jagt; Fiona H. Levy; Lynn J. Hernan; Faye S. Silverstein; J. Michael Dean
Objectives: To describe a large multicenter cohort of pediatric cardiac arrest (CA) with return of circulation (ROC) from either the in-hospital (IH) or the out-of-hospital (OH) setting and to determine whether significant differences related to pre-event, arrest event, early postarrest event characteristics, and outcomes exist that would be critical in planning a clinical trial of therapeutic hypothermia (TH). Design: Retrospective cohort study. Setting: Fifteen Pediatric Emergency Care Applied Research Network sites. Patients: Patients aged 24 hours to 18 years with either IH or OH CA who had a history of at least 1 minute of chest compressions and ROC for at least 20 minutes were eligible. Interventions: None. Measurements and Main Results: A total of 491 patients met study entry criteria with 353 IH cases and 138 OH cases. Major differences between the IH and OH cohorts were observed for patient prearrest characteristics, arrest event initial rhythm described, and arrest medication use. Several postarrest interventions were used differently, however, the use of TH was similar (<5%) in both cohorts. During the 0–12-hour interval following ROC, OH cases had lower minimum temperature and pH, and higher maximum serum glucose recorded. Mortality was greater in the OH cohort (62% vs. 51%, p = 0.04) with the cause attributed to a neurologic indication much more frequent in the OH than in the IH cohort (69% vs. 20%; p < 0.01). Conclusions: For pediatric CA with ROC, several major differences exist between IH and OH cohorts. The finding that the etiology of death was attributed to neurologic indications much more frequently in OH arrests has important implications for future research. Investigators planning to evaluate the efficacy of new interventions, such as TH, should be aware that the IH and OH populations differ greatly and require independent clinical trials.
Pediatrics | 2005
Karen S. Powers; Emily Nazarian; Sarah A. Tapyrik; Susan M. Kohli; Hsiang Yin; Elise W. van der Jagt; John S. Sullivan; Jeffrey S. Rubenstein
Objective. To determine whether the bispectral index (BIS) monitor could be used to guide physicians in titrating propofol to an effective safe level of deep sedation for children undergoing painful medical procedures. Design. Multiphase clinical trial. Setting. Outpatient treatment center of a university childrens hospital. Patients. Pediatric outpatients undergoing painful medical procedures. Interventions. Patients were sedated with propofol for the procedures. Patients were monitored with a BIS monitor, and the BIS score was correlated with the patients clinical level of sedation. The BIS score was then used as a guide to titrate propofol in the last phase of the study. Measurements and Main Results. The study consisted of 3 phases. In a chart review of data for 154 children who underwent 212 procedures, propofol was found to be safe and effective, with consistent dosing among the intensivists administering the medication. The children received a mean bolus dose of propofol of 1.56 mg/kg, with a mean total dose of propofol of 0.33 mg/kg per minute for the duration of the procedure. In the second phase, 21 patients ranging in age from 27 weeks to 18 years, with normal neurologic function, were sedated with propofol. An observer who was blinded to the BIS scores recorded clinical levels of sedation and reactivity (with a modified Ramsay scale and reactivity score) every 1 to 3 minutes. Another observer recorded the BIS scores at the same times. A total of 275 data points were collected and evaluated. All data points from the times at which patients were considered to be sedated adequately were used to construct a normal distribution of BIS scores. The mean BIS score was 62. This distribution was used to predict that a maximal BIS score of 47 was needed to ensure adequate sedation for 90% of the population. In the third phase of the study, an algorithm was devised to determine the target BIS score necessary for adequate sedation of 95% of the patients. We chose an initial BIS score of 50 (at which 85% of the patients in phase 2 were sedated) because of the possibility of data from phase 2 being skewed toward oversedation. Propofol was administered by an intensivist in an attempt to maintain the target BIS score. A blinded observer noted the patients clinical level of sedation. In this group, there were 2 failures, ie, patients were clinically uncomfortable despite a BIS score of ≤50, representing only 90% success. Therefore, with the algorithm, propofol was titrated to sedate the next patients to a BIS score of 45. These patients required a mean bolus dose of 1.47 mg/kg and a mean total dose of 0.51 mg/kg per minute to maintain a BIS score of 45. They awakened in 12.75 minutes. All patients were sedated adequately, all procedures were successful, and no patients experienced complications from the sedation. To eliminate variability in the way propofol was dosed, the next 10 patients were given propofol according to a standardized protocol. These 10 children received an initial bolus of 1 mg/kg, with incremental bolus doses of 0.5 mg/kg per dose (maximum: 20 mg) to achieve and to maintain a BIS score of 45. With this protocol, all patients were sedated adequately and none experienced complications from the sedation. The patients required a mean bolus dose of 2.23 mg/kg and a mean dose of 0.52 mg/kg per minute to maintain a BIS score of 45. The mean time until awakening was 14.9 minutes. Regarding the total dose over time and the time until awakening, there was no statistical significance between this group and the group sedated to a BIS score of 45 without the dosing protocol. Conclusion. The BIS monitor can be a useful monitoring guide for the titration of propofol by physicians who are competent in airway and hemodynamic management, to achieve deep sedation for children undergoing painful procedures.