Elismar R. Oliveira
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elismar R. Oliveira.
arXiv: Dynamical Systems | 2014
Gonzalo Contreras; Artur O. Lopes; Elismar R. Oliveira
Consider the shift T acting on the Bernoulli space \(\varSigma =\{ 1,2,3,..,d\}^{\mathbb{N}}\) and \(A:\varSigma \rightarrow \mathbb{R}\) a Holder potential. Denote
arXiv: Dynamical Systems | 2016
Artur O. Lopes; Elismar R. Oliveira
Stochastics and Dynamics | 2017
Jairo K. Mengue; Elismar R. Oliveira
\displaystyle{m(A) =\max _{\nu \mbox{ an invariant probability for
Applied Numerical Mathematics | 2003
A. Bourchtein; L. Bourchtein; Elismar R. Oliveira
T
Archive | 2015
Alexandre Baraviera; Elismar R. Oliveira; F. B. Rodrigues
}}\int A(x)\;d\nu (x),}
Dynamical Systems-an International Journal | 2015
Artur O. Lopes; Elismar R. Oliveira
Linear & Multilinear Algebra | 2018
Elismar R. Oliveira; Dragan Stevanović; Vilmar Trevisan
and, μ ∞, A , any probability which attains the maximum value. We will assume that the maximizing probability μ ∞ is unique and has support in a periodic orbit. We denote by \(\mathbb{T}\) the left-shift acting on the space of points \((w,x) \in \{ 1,2,3,..,d\}^{\mathbb{Z}} =\varSigma \times \varSigma =\hat{\varSigma }\). For a given potential Holder \(A:\varSigma \rightarrow \mathbb{R}\), where A acts on the variable x, we say that a Holder continuous function \(W:\hat{\varSigma }\rightarrow \mathbb{R}\) is a involution kernel for A (where A ∗ acts on the variable w), if there is a Holder function \(A^{{\ast}}:\varSigma \rightarrow \mathbb{R}\), such that,
Discrete and Continuous Dynamical Systems | 2008
Artur O. Lopes; Elismar R. Oliveira
Bulletin of The Brazilian Mathematical Society | 2012
Artur O. Lopes; Elismar R. Oliveira; Daniel Smania
\displaystyle{A^{{\ast}}(w) = A \circ \mathbb{T}^{-1}(w,x) + W \circ \mathbb{T}^{-1}(w,x) - W(w,x).}
Discrete and Continuous Dynamical Systems | 2008
Elismar R. Oliveira