Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elismar R. Oliveira is active.

Publication


Featured researches published by Elismar R. Oliveira.


arXiv: Dynamical Systems | 2014

Ergodic Transport Theory, Periodic Maximizing Probabilities and the Twist Condition

Gonzalo Contreras; Artur O. Lopes; Elismar R. Oliveira

Consider the shift T acting on the Bernoulli space \(\varSigma =\{ 1,2,3,..,d\}^{\mathbb{N}}\) and \(A:\varSigma \rightarrow \mathbb{R}\) a Holder potential. Denote


arXiv: Dynamical Systems | 2016

On the Thin Boundary of the Fat Attractor

Artur O. Lopes; Elismar R. Oliveira


Stochastics and Dynamics | 2017

Duality results for iterated function systems with a general family of branches

Jairo K. Mengue; Elismar R. Oliveira

\displaystyle{m(A) =\max _{\nu \mbox{ an invariant probability for


Applied Numerical Mathematics | 2003

General approach to conformal mappings used in atmospheric modeling

A. Bourchtein; L. Bourchtein; Elismar R. Oliveira

T


Archive | 2015

A Note on the Dynamics of Linear Automorphisms of a Convolution Measure Algebra

Alexandre Baraviera; Elismar R. Oliveira; F. B. Rodrigues

}}\int A(x)\;d\nu (x),}


Dynamical Systems-an International Journal | 2015

On generic G-prevalent properties and a quantitative K-S theorem for Cr diffeomorphisms of the circle

Artur O. Lopes; Elismar R. Oliveira


Linear & Multilinear Algebra | 2018

Spectral radius ordering of starlike trees

Elismar R. Oliveira; Dragan Stevanović; Vilmar Trevisan

and, μ ∞, A , any probability which attains the maximum value. We will assume that the maximizing probability μ ∞ is unique and has support in a periodic orbit. We denote by \(\mathbb{T}\) the left-shift acting on the space of points \((w,x) \in \{ 1,2,3,..,d\}^{\mathbb{Z}} =\varSigma \times \varSigma =\hat{\varSigma }\). For a given potential Holder \(A:\varSigma \rightarrow \mathbb{R}\), where A acts on the variable x, we say that a Holder continuous function \(W:\hat{\varSigma }\rightarrow \mathbb{R}\) is a involution kernel for A (where A ∗ acts on the variable w), if there is a Holder function \(A^{{\ast}}:\varSigma \rightarrow \mathbb{R}\), such that,


Discrete and Continuous Dynamical Systems | 2008

Entropy and variational principles for holonomic probabilities of IFS

Artur O. Lopes; Elismar R. Oliveira


Bulletin of The Brazilian Mathematical Society | 2012

Ergodic transport theory and piecewise analytic subactions for analytic dynamics

Artur O. Lopes; Elismar R. Oliveira; Daniel Smania

\displaystyle{A^{{\ast}}(w) = A \circ \mathbb{T}^{-1}(w,x) + W \circ \mathbb{T}^{-1}(w,x) - W(w,x).}


Discrete and Continuous Dynamical Systems | 2008

Generic properties of Lagrangians on surfaces: The Kupka-Smale theorem

Elismar R. Oliveira

Collaboration


Dive into the Elismar R. Oliveira's collaboration.

Top Co-Authors

Avatar

Artur O. Lopes

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alexandre Baraviera

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vilmar Trevisan

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. B. Rodrigues

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Diogo A. Gomes

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge