Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eliyahu V. Khankin is active.

Publication


Featured researches published by Eliyahu V. Khankin.


Nature | 2012

Cardiac angiogenic imbalance leads to peripartum cardiomyopathy

Ian S. Patten; Sarosh Rana; Sajid Shahul; Glenn C. Rowe; Cholsoon Jang; Laura Liu; Michele R. Hacker; Julie S. Rhee; John D. Mitchell; Feroze Mahmood; Philip E. Hess; Caitlin Farrell; Nicole Koulisis; Eliyahu V. Khankin; Suzanne D. Burke; I. Tudorache; Johann Bauersachs; Federica del Monte; Denise Hilfiker-Kleiner; S. Ananth Karumanchi; Zoltan Arany

Peripartum cardiomyopathy (PPCM) is an often fatal disease that affects pregnant women who are near delivery, and it occurs more frequently in women with pre-eclampsia and/or multiple gestation. The aetiology of PPCM, and why it is associated with pre-eclampsia, remain unknown. Here we show that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble FLT1 (sFLT1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by subclinical cardiac dysfunction, the extent of which correlates with circulating levels of sFLT1. Exogenous sFLT1 alone caused diastolic dysfunction in wild-type mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFLT1. These data indicate that PPCM is mainly a vascular disease, caused by excess anti-angiogenic signalling in the peripartum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.


Molecular and Cellular Biology | 2009

Angiopoietin 2 Is a Partial Agonist/Antagonist of Tie2 Signaling in the Endothelium

Hai Tao Yuan; Eliyahu V. Khankin; S. Ananth Karumanchi; Samir M. Parikh

ABSTRACT Angiopoietin 2 (Ang2) was originally shown to be a competitive antagonist for Ang1 of the receptor tyrosine kinase Tie2 in endothelial cells (ECs). Since then, reports have conflicted on whether Ang2 is an agonist or antagonist of Tie2. Here we show that Ang2 functions as an agonist when Ang1 is absent but as a dose-dependent antagonist when Ang1 is present. Exogenous Ang2 activates Tie2 and the promigratory, prosurvival PI3K/Akt pathway in ECs but with less potency and lower affinity than exogenous Ang1. ECs produce Ang2 but not Ang1. This endogenous Ang2 maintains Tie2, phosphatidylinositol 3-kinase, and Akt activities, and it promotes EC survival, migration, and tube formation. However, when ECs are stimulated with Ang1 and Ang2, Ang2 dose-dependently inhibits Ang1-induced Tie2 phosphorylation, Akt activation, and EC survival. We conclude that Ang2 is both an agonist and an antagonist of Tie2. Although Ang2 is a weaker agonist than Ang1, endogenous Ang2 maintains a level of Tie2 activation that is critical to a spectrum of EC functions. These findings may reconcile disparate reports of Ang2s effect on Tie2, impact our understanding of endogenous receptor tyrosine kinase signal transduction mechanisms, and affect how Ang2 and Tie2 are targeted under conditions such as sepsis and cancer.


Journal of Clinical Investigation | 2011

PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice.

Mei Tran; Denise Tam; Amit Bardia; Manoj Bhasin; Glenn C. Rowe; Ajay Kher; Zsuzsanna Zsengellér; M. Reza Akhavan-Sharif; Eliyahu V. Khankin; Magali Saint-Geniez; Sascha David; Deborah Burstein; S. Ananth Karumanchi; Isaac E. Stillman; Zoltan Arany; Samir M. Parikh

Sepsis-associated acute kidney injury (AKI) is a common and morbid condition that is distinguishable from typical ischemic renal injury by its paucity of tubular cell death. The mechanisms underlying renal dysfunction in individuals with sepsis-associated AKI are therefore less clear. Here we have shown that endotoxemia reduces oxygen delivery to the kidney, without changing tissue oxygen levels, suggesting reduced oxygen consumption by the kidney cells. Tubular mitochondria were swollen, and their function was impaired. Expression profiling showed that oxidative phosphorylation genes were selectively suppressed during sepsis-associated AKI and reactivated when global function was normalized. PPARγ coactivator-1α (PGC-1α), a major regulator of mitochondrial biogenesis and metabolism, not only followed this pattern but was proportionally suppressed with the degree of renal impairment. Furthermore, tubular cells had reduced PGC-1α expression and oxygen consumption in response to TNF-α; however, excess PGC-1α reversed the latter effect. Both global and tubule-specific PGC-1α-knockout mice had normal basal renal function but suffered persistent injury following endotoxemia. Our results demonstrate what we believe to be a novel mechanism for sepsis-associated AKI and suggest that PGC-1α induction may be necessary for recovery from this disorder, identifying a potential new target for future therapeutic studies.


Critical Care Medicine | 2012

Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis*.

Sascha David; Aditi Mukherjee; Chandra C. Ghosh; Midori Yano; Eliyahu V. Khankin; Julia Wenger; S. Ananth Karumanchi; Nathan I. Shapiro; Samir M. Parikh

Objective:In sepsis, quiescent blood vessels become leaky and inflamed by mechanisms that are incompletely understood. We hypothesized that angiopoietin-2, a partial antagonist of the endothelium-stabilizing receptor Tie-2 secreted by endothelium, contributes to adverse outcomes in this disease. Design:Laboratory and animal research. Settings:Research laboratories and Emergency Department of Beth Israel Deaconess Medical Center, Boston, MA. Subjects:Angiopoietin-2 heterozygous mice, emergency department patients. Measurements and Main Results:Mice with one functional angiopoietin-2 allele developed milder kidney and lung injury, less tissue inflammation, and less vascular leakage compared to wild-type counterparts. Heterozygotes experienced >40% absolute survival advantage following two different models of sepsis (p = .004 and .018). In human subjects presenting to our emergency department with suspected infection (n = 270 combined), circulating angiopoietin-2 was markedly elevated within the first hour of clinical care. First-hour angiopoietin-2 concentrations were proportional to current disease severity (p < .0001), rose further over time in eventual nonsurvivors (p < .0001), and predicted the future occurrence of shock (p < .0001) or death (p < .0001) in the original cohort and an independent validation group. Finally, septic human serum disrupted the barrier function of microvascular endothelial cells, an effect fully neutralized by an angiopoietin-2 monoclonal antibody. Conclusions:We conclude that angiopoietin-2 induction precedes and contributes to the adverse outcomes in sepsis, opening a new avenue for therapeutic investigation.


Seminars in Nephrology | 2010

Hypertension Induced by Vascular Endothelial Growth Factor Signaling Pathway Inhibition: Mechanisms and Potential Use as a Biomarker

Emily Robinson; Eliyahu V. Khankin; S. Ananth Karumanchi; Benjamin D. Humphreys

Drugs that inhibit the vascular endothelial growth factor (VEGF) signaling pathway are a rapidly growing chemotherapy class for treatment of solid tumors. This targeted therapy is more specific than traditional chemotherapy, causing fewer side effects. However, VEGF-targeted therapies cause hypertension in 30% to 80% of patients. Unlike traditional off-target side effects, hypertension is a mechanism-dependent, on-target toxicity, reflecting effective inhibition of the VEGF signaling pathway rather than nonspecific effects on unrelated signaling pathways. In this article, we review current understanding of the mechanisms of VEGF-targeted therapy-induced hypertension, discuss similarities with preeclampsia, review implications for therapy of this increasingly common clinical problem, and discuss the potential use of blood pressure increase as a biomarker for proper drug dosing and effective VEGF pathway inhibition.


Hypertension | 2010

Suppression of the Nitric Oxide Pathway in Metastatic Renal Cell Carcinoma Patients Receiving Vascular Endothelial Growth Factor–Signaling Inhibitors

Emily Robinson; Eliyahu V. Khankin; Toni K. Choueiri; Mallika Sachdev Dhawan; Miranda Rogers; S. Ananth Karumanchi; Benjamin D. Humphreys

Therapies that target the vascular endothelial growth factor (VEGF) pathway cause hypertension, but the mechanism remains unknown. This cross-sectional study tested the hypothesis that VEGF inhibition causes hypertension by suppressing VEGF-mediated vasodilatory pathways. Urine was collected from 80 patients with metastatic renal cell carcinoma from 2002 to 2009, 40 at baseline and 40 while on VEGF inhibitors. Measured urinary biomarkers include albumin, metabolites of the nitric oxide (NO) pathway and its downstream effector cGMP, and prostaglandin pathway biomarkers prostaglandin E2, 6-keto prostaglandin F1&agr;, and cAMP, all normalized to urinary creatinine. The mean age in both groups was 61.8 years, 76% were men, and urinary albumin was higher in patients receiving VEGF inhibitors (median: 18.4 versus 4.6 mg/g; P=0.009). cGMP/creatinine was suppressed in patients on VEGF inhibitors (0.28 versus 0.39 pmol/&mgr;g; P=0.01), with a trend toward suppression of nitrate/creatinine (0.46 versus 0.62 &mgr;mol/mg; P=0.09). Both comparisons were strengthened when patients on bevacizumab were excluded, and only those receiving small molecule tyrosine kinase inhibitors were analyzed (cGMP/creatinine: P=0.003; nitrate/creatinine: P=0.01). Prostaglandin E2, 6-keto prostaglandin F1&agr;, and cAMP did not differ between groups. These results suggest that hypertension induced by VEGF inhibitors is mediated by suppression of NO production. Prospective studies are needed to explore whether these biomarkers may be useful predictors of efficacy in patients receiving VEGF-targeted therapies.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality

Sascha David; Chandra C. Ghosh; Philipp Kümpers; Nelli Shushakova; Paul Van Slyke; Eliyahu V. Khankin; S. Ananth Karumanchi; Dan J. Dumont; Samir M. Parikh

A synthetic 7-mer, HHHRHSF, was recently identified by screening a phage display library for binding to the Tie-2 receptor. A polyethylene-oxide clustered version of this peptide, termed vasculotide (VT), was reported to activate Tie-2 and promote angiogenesis in a mouse model of diabetic ulcer. We hypothesized that VT administration would defend endothelial barrier function against sepsis-associated mediators of permeability, prevent lung vascular leakage arising in endotoxemia, and improve mortality in endotoxemic mice. In confluent human microvascular endothelial cells, VT prevented endotoxin-induced (lipopolysaccharides, LPS O111:B4) gap formation, loss of monolayer resistance, and translocation of labeled albumin. In 8-wk-old male C57Bl6/J mice given a ∼70% lethal dose of endotoxin (15 mg/kg ip), VT prevented lung vascular leakage and reversed the attenuation of lung vascular endothelial cadherin induced by endotoxemia. These protective effects of VT were associated with activation of Tie-2 and its downstream mediator, Akt. Echocardiographic studies showed only a nonsignificant trend toward improved myocardial performance associated with VT. Finally, we evaluated survival in this mouse model. Pretreatment with VT improved survival by 41.4% (n = 15/group, P = 0.02) and post-LPS administration of VT improved survival by 33.3% (n = 15/group, P = 0.051). VT-mediated protection from LPS lethality was lost in Tie-2 heterozygous mice, in agreement with VTs proposed receptor specificity. We conclude that this synthetic Tie-2 agonist, completely unrelated to endogenous Tie-2 ligands, is sufficient to activate the receptor and its downstream pathways in vivo and that the Tie-2 receptor may be an important target for therapeutic evaluation in conditions of pathological vascular leakage.


Endocrinology | 2010

Regulation of Placental Growth by Aldosterone and Cortisol

Carine Moser; Eliyahu V. Khankin; Simone Schüller; Geneviève Escher; Brigitte M. Frey; C.-Bettina Portmann; Marc Baumann; Andrea D. Lehmann; Daniel Surbek; S. Ananth Karumanchi; Felix J. Frey; Markus G. Mohaupt

During pregnancy, trophoblasts grow to adapt the feto-maternal unit to fetal requirements. Aldosterone and cortisol levels increase, the latter being inactivated by a healthy placenta. By contrast, preeclamptic placental growth is reduced while aldosterone levels are low and placental cortisol tissue levels are high due to improper deactivation. Aldosterone acts as a growth factor in many tissues, whereas cortisol inhibits growth. We hypothesized that in preeclampsia low aldosterone and enhanced cortisol availability might mutually affect placental growth and function. Proliferation of cultured human trophoblasts was time- and dose-dependently increased with aldosterone (P < 0.04 to P < 0.0001) and inhibited by spironolactone and glucocorticoids (P < 0.01). Mineralo- and glucocorticoid receptor expression and activation upon agonist stimulation was verified by visualization of nuclear translocation of the receptors. Functional aldosterone deficiency simulated in pregnant mice by spironolactone treatment (15 μg/g body weight/day) led to a reduced fetal umbilical blood flow (P < 0.05). In rat (P < 0.05; R(2) = 0.2055) and human (X(2) = 3.85; P = 0.0249) pregnancy, placental size was positively related to plasma aldosterone. Autocrine production of these steroid hormones was excluded functionally and via the absence of specific enzymatic transcripts for CYP11B2 and CYP11B1. In conclusion, activation of mineralocorticoid receptors by maternal aldosterone appears to be required for trophoblast growth and a normal feto-placental function. Thus, low aldosterone levels and enhanced cortisol availability may be one explanation for the reduced placental size in preeclampsia and related disorders.


Nature | 2016

PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection

Mei T. Tran; Zsuzsanna Zsengellér; Anders H. Berg; Eliyahu V. Khankin; Manoj Bhasin; Wondong Kim; Clary B. Clish; Isaac E. Stillman; S. Ananth Karumanchi; Eugene P. Rhee; Samir M. Parikh

The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischaemia. Acute kidney injury (AKI) affects 3% of all hospitalized patients. Here we show that the mitochondrial biogenesis regulator, PGC1α, is a pivotal determinant of renal recovery from injury by regulating nicotinamide adenine dinucleotide (NAD) biosynthesis. Following renal ischaemia, Pgc1α−/− (also known as Ppargc1a−/−) mice develop local deficiency of the NAD precursor niacinamide (NAM, also known as nicotinamide), marked fat accumulation, and failure to re-establish normal function. Notably, exogenous NAM improves local NAD levels, fat accumulation, and renal function in post-ischaemic Pgc1α−/− mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulate the effects of NAM supplementation, including more local NAD and less fat accumulation with better renal function after ischaemia. PGC1α coordinately upregulates the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuates the de novo pathway. NAM enhances NAD via the enzyme NAMPT and augments production of the fat breakdown product β-hydroxybutyrate, leading to increased production of prostaglandin PGE2 (ref. 5), a secreted autacoid that maintains renal function. NAM treatment reverses established ischaemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-hydroxybutyrate signalling or prostaglandin production similarly abolishes PGC1α-dependent renoprotection. Given the importance of mitochondrial health in ageing and the function of metabolically active organs, the results implicate NAM and NAD as key effectors for achieving PGC1α-dependent stress resistance.


Current Opinion in Nephrology and Hypertension | 2006

Pulmonary hypertension in chronic dialysis patients with arteriovenous fistula: pathogenesis and therapeutic prospective

Zaid Abassi; Farid Nakhoul; Eliyahu V. Khankin; Shimon A. Reisner; Mordechai Yigla

Purpose of reviewEnd-stage renal disease patients receiving chronic haemodialysis via arteriovenous access often develop various cardiovascular complications, including vascular calcification, cardiac-vascular calcification and atherosclerotic coronary disease. This review describes recently published studies that demonstrate a high incidence of pulmonary hypertension among patients with end-stage renal disease receiving long-term haemodialysis via a surgical arteriovenous fistula. Both end-stage renal disease and long-term haemodialysis via arteriovenous fistula may be involved in the pathogenesis of pulmonary hypertension by affecting pulmonary vascular resistance and cardiac output. Recent findingsMorbidity and mortality from cardiovascular disease are greatly increased in patients on maintenance haemodialysis therapy. Using Doppler echocardiography, we found a significant increase in cardiac output in 40% of chronic haemodialysis patients, probably related to the large arteriovenous access or altered vascular resistance as a result of the local vascular tone and function expressed by the imbalance between vasodilators such as nitric oxide, and vasoconstrictors such as endothelin-1. SummaryWe propose different potential mechanisms as explanations for the development of pulmonary hypertension. Hormonal and metabolic derangement associated with end-stage renal disease might lead to pulmonary arterial vasoconstriction and an increase in pulmonary vascular resistance. Pulmonary arterial pressure may be further increased by high cardiac output resulting from the arteriole–venous access itself, worsened by commonly occurring anaemia and fluid overload.

Collaboration


Dive into the Eliyahu V. Khankin's collaboration.

Top Co-Authors

Avatar

S. Ananth Karumanchi

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samir M. Parikh

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Farid Nakhoul

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha Pavlakis

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge