Eliza Joodmardi
Ludwig Institute for Cancer Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eliza Joodmardi.
The Journal of Neuroscience | 2009
Banafsheh Kadkhodaei; Takehito Ito; Eliza Joodmardi; Bengt Mattsson; Claude Rouillard; Manolo Carta; Shin-ichi Muramatsu; Chiho Sumi-Ichinose; Takahide Nomura; Daniel Metzger; Pierre Chambon; Eva Lindqvist; Nils-Goeran Larsson; Lars Olson; Anders Björklund; Hiroshi Ichinose; Thomas Perlmann
Transcription factors involved in the specification and differentiation of neurons often continue to be expressed in the adult brain, but remarkably little is known about their late functions. Nurr1, one such transcription factor, is essential for early differentiation of midbrain dopamine (mDA) neurons but continues to be expressed into adulthood. In Parkinsons disease, Nurr1 expression is diminished and mutations in the Nurr1 gene have been identified in rare cases of disease; however, the significance of these observations remains unclear. Here, a mouse strain for conditional targeting of the Nurr1 gene was generated, and Nurr1 was ablated either at late stages of mDA neuron development by crossing with mice carrying Cre under control of the dopamine transporter locus or in the adult brain by transduction of adeno-associated virus Cre-encoding vectors. Nurr1 deficiency in maturing mDA neurons resulted in rapid loss of striatal DA, loss of mDA neuron markers, and neuron degeneration. In contrast, a more slowly progressing loss of striatal DA and mDA neuron markers was observed after ablation in the adult brain. As in Parkinsons disease, neurons of the substantia nigra compacta were more vulnerable than cells in the ventral tegmental area when Nurr1 was ablated at late embryogenesis. The results show that developmental pathways play key roles for the maintenance of terminally differentiated neurons and suggest that disrupted function of Nurr1 and other developmental transcription factors may contribute to neurodegenerative disease.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Bertrand Joseph; Åsa Wallén-Mackenzie; Gérard Benoit; Takashi Murata; Eliza Joodmardi; Sam Okret; Thomas Perlmann
Cyclin-dependent kinase inhibitors of the Cip/Kip family play critical roles in regulating cell proliferation during embryogenesis. However, these proteins also influence cell differentiation by mechanisms that have remained unknown. Here we show that p57Kip2 is expressed in postmitotic differentiating midbrain dopamine cells. Induction of p57Kip2 expression depends on Nurr1, an orphan nuclear receptor that is essential for dopamine neuron development. Moreover, analyses of p57Kip2 gene-targeted mice revealed that p57Kip2 is required for the maturation of midbrain dopamine neuronal cells. Additional experiments in a dopaminergic cell line demonstrated that p57Kip2 can promote maturation by a mechanism that does not require p57Kip2-mediated inhibition of cyclin-dependent kinases. Instead, evidence indicates that p57Kip2 functions by a direct protein–protein interaction with Nurr1. Thus, in addition to its established function in control of proliferation, these results reveal a mechanism whereby p57Kip2 influences postmitotic differentiation of dopamine neurons.
The Journal of Neuroscience | 2012
Stéphanie Vuillermot; Eliza Joodmardi; Thomas Perlmann; Sven Ove Ögren; Joram Feldon; Urs Meyer
Prenatal exposure to infection has been linked to increased risk of neurodevelopmental brain disorders, and recent evidence implicates altered dopaminergic development in this association. However, since the relative risk size of prenatal infection appears relatively small with respect to long-term neuropsychiatric outcomes, it is likely that this prenatal insult interacts with other factors in shaping the risk of postnatal brain dysfunctions. In the present study, we show that the neuropathological consequences of prenatal viral-like immune activation are exacerbated in offspring with genetic predisposition to dopaminergic abnormalities induced by mutations in Nurr1, a transcription factor highly essential for normal dopaminergic development. We combined a mouse model of heterozygous genetic deletion of Nurr1 with a model of prenatal immune challenge by the viral mimetic poly(I:C) (polyriboinosinic polyribocytidilic acid). In our gene–environment interaction model, we demonstrate that the combination of the genetic and environmental factors not only exerts additive effects on locomotor hyperactivity and sensorimotor gating deficits, but further produces synergistic effects in the development of impaired attentional shifting and sustained attention. We further demonstrate that the combination of the two factors is necessary to trigger maldevelopment of prefrontal cortical and ventral striatal dopamine systems. Our findings provide evidence for specific gene–environment interactions in the emergence of enduring attentional impairments and neuronal abnormalities pertinent to dopamine-associated brain disorders such as schizophrenia and attention deficit/hyperactivity disorder, and further emphasize a critical role of abnormal dopaminergic development in these etiopathological processes.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Nikolaos Volakakis; Banafsheh Kadkhodaei; Eliza Joodmardi; Karin Wallis; Lia Panman; Jessica M. Silvaggi; Bruce M. Spiegelman; Thomas Perlmann
Induced expression of neuroprotective genes is essential for maintaining neuronal integrity after stressful insults to the brain. Here we show that NR4A nuclear orphan receptors are induced after excitotoxic and oxidative stress in neurons, up-regulate neuroprotective genes, and increase neuronal survival. Moreover, we show that NR4A proteins are induced by cAMP response element binding protein (CREB) in neurons exposed to stressful insults and that they function as mediators of CREB-induced neuronal survival. Animals with null mutations in three of six NR4A alleles show increased oxidative damage, blunted induction of neuroprotective genes, and increased vulnerability in the hippocampus after treatment with kainic acid. We also demonstrate that NR4A and the transcriptional coactivator PGC-1α independently regulate distinct CREB-dependent neuroprotective gene programs. These data identify NR4A nuclear orphan receptors as essential mediators of neuroprotection after exposure to neuropathological stress.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Banafsheh Kadkhodaei; Alexandra Alvarsson; Nicoletta Schintu; Daniel Ramsköld; Nikolaos Volakakis; Eliza Joodmardi; Takashi Yoshitake; Jan Kehr; Mickael Decressac; Anders Björklund; Rickard Sandberg; Per Svenningsson; Thomas Perlmann
Developmental transcription factors important in early neuron specification and differentiation often remain expressed in the adult brain. However, how these transcription factors function to mantain appropriate neuronal identities in adult neurons and how transcription factor dysregulation may contribute to disease remain largely unknown. The transcription factor Nurr1 has been associated with Parkinsons disease and is essential for the development of ventral midbrain dopamine (DA) neurons. We used conditional Nurr1 gene-targeted mice in which Nurr1 is ablated selectively in mature DA neurons by treatment with tamoxifen. We show that Nurr1 ablation results in a progressive pathology associated with reduced striatal DA, impaired motor behaviors, and dystrophic axons and dendrites. We used laser-microdissected DA neurons for RNA extraction and next-generation mRNA sequencing to identify Nurr1-regulated genes. This analysis revealed that Nurr1 functions mainly in transcriptional activation to regulate a battery of genes expressed in DA neurons. Importantly, nuclear-encoded mitochondrial genes were identified as the major functional category of Nurr1-regulated target genes. These studies indicate that Nurr1 has a key function in sustaining high respiratory function in these cells, and that Nurr1 ablation in mice recapitulates early features of Parkinsons disease.
Cell Reports | 2014
Lia Panman; Maria Papathanou; Ariadna Laguna; Tony Oosterveen; Nikolaos Volakakis; Dario Acampora; Idha Kurtsdotter; Takashi Yoshitake; Jan Kehr; Eliza Joodmardi; Jonas Muhr; Antonio Simeone; Johan Ericson; Thomas Perlmann
Distinct midbrain dopamine (mDA) neuron subtypes are found in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), but it is mainly SNc neurons that degenerate in Parkinsons disease. Interest in how mDA neurons develop has been stimulated by the potential use of stem cells in therapy or disease modeling. However, very little is known about how specific dopaminergic subtypes are generated. Here, we show that the expression profiles of the transcription factors Sox6, Otx2, and Nolz1 define subpopulations of mDA neurons already at the neural progenitor cell stage. After cell-cycle exit, Sox6 selectively localizes to SNc neurons, while Otx2 and Nolz1 are expressed in a subset of VTA neurons. Importantly, Sox6 ablation leads to decreased expression of SNc markers and a corresponding increase in VTA markers, while Otx2 ablation has the opposite effect. Moreover, deletion of Sox6 affects striatal innervation and dopamine levels. We also find reduced Sox6 levels in Parkinsons disease patients. These findings identify Sox6 as a determinant of SNc neuron development and should facilitate the engineering of relevant mDA neurons for cell therapy and disease modeling.
Nature Neuroscience | 2015
Ariadna Laguna; Nicoletta Schintu; André Nobre; Alexandra Alvarsson; Nikolaos Volakakis; Jesper Kjaer Jacobsen; Marta Gómez-Galán; Elena Sopova; Eliza Joodmardi; Takashi Yoshitake; Qiaolin Deng; Jan Kehr; Johan Ericson; Per Svenningsson; Oleg Shupliakov; Thomas Perlmann
The role of developmental transcription factors in maintenance of neuronal properties and in disease remains poorly understood. Lmx1a and Lmx1b are key transcription factors required for the early specification of ventral midbrain dopamine (mDA) neurons. Here we show that conditional ablation of Lmx1a and Lmx1b after mDA neuron specification resulted in abnormalities that show striking resemblance to early cellular abnormalities seen in Parkinsons disease. We found that Lmx1b was required for the normal execution of the autophagic-lysosomal pathway and for the integrity of dopaminergic nerve terminals and long-term mDA neuronal survival. Notably, human LMX1B expression was decreased in mDA neurons in brain tissue affected by Parkinsons disease. Thus, these results reveal a sustained and essential requirement of Lmx1b for the function of midbrain mDA neurons and suggest that its dysfunction is associated with Parkinsons disease pathogenesis.
Journal of Neurochemistry | 2006
Elisabet Hermanson; Lotta Borgius; Maria Bergsland; Eliza Joodmardi; Thomas Perlmann
The orphan nuclear receptor Nurr1 is expressed in the developing and adult central nervous system. Previous studies have shown that Nurr1 is essential for the generation of midbrain dopamine neurons. Furthermore, Nurr1 is critical for respiratory functions associated with the brain stem. Very few Nurr1 regulated genes have been identified and it remains unclear how Nurr1 influences the function and development of neurons. To identify novel Nurr1 target genes we have searched for regulated genes in the dopaminergic MN9D cell line. These experiments identified Neuropilin‐1 (Nrp1), a receptor protein involved in axon guidance and angiogenesis, as a novel Nurr1 target gene. Nrp1 expression was rapidly up‐regulated by Nurr1 in MN9D cells and in situ hybridization analysis showed that Nrp1 was coexpressed with Nurr1 in the brain stem dorsal motor nucleus. Importantly, Nrp1 expression was down‐regulated in this area in Nurr1 null mice. Moreover, two functional Nurr1 binding sites were identified in the Nrp1 promoter and Nurr1 was found to be recruited to these sites in MN9D cells, further supporting that Nrp1 is a direct downstream target of Nurr1. Taken together, our findings suggest that Nurr1 might influence the processes of axon guidance and/or angiogenesis via the regulation of Nrp1 expression.
Genes, Brain and Behavior | 2011
Stéphanie Vuillermot; Eliza Joodmardi; Thomas Perlmann; S. Ove Ögren; Joram Feldon; Urs Meyer
Nurr1 (NR4A2) is an orphan nuclear receptor highly essential for the dopaminergic development and survival. Altered expression of Nurr1 has been suggested as a potential genetic risk factor for dopamine‐related brain disorders, including schizophrenia. In support of this, recent experimental work in genetically modified mice shows that mice with a heterozygous constitutive deletion of Nurr1 show a facilitation of the development of schizophrenia‐related behavioral abnormalities. However, the behavioral characterization of this Nurr1‐deficient mouse model remains incomplete. This study therefore used a comprehensive behavioral test battery to evaluate schizophrenia‐relevant phenotypes in Nurr1‐deficient mice. We found that these mice displayed increased spontaneous locomotor activity and potentiated locomotor reaction to systemic treatment with the non‐competitive N‐methyl‐d‐aspartate (NMDA) receptor antagonist, dizocilpine (MK‐801). In addition, male but not female Nurr1‐deficient mice showed significant deficits in the prepulse inhibition and prepulse‐elicited reactivity. However, Nurr1 deletion did not induce overt abnormalities in other cardinal behavioral and cognitive functions known to be impaired in schizophrenia, including social interaction and recognition, spatial recognition memory or discrimination reversal learning. Our findings thus suggest that heterozygous constitutive deletion of Nurr1 results in a restricted phenotype characteristic of schizophrenia symptomatology, which primarily relates to motor activity, sensorimotor gating and responsiveness to the psychomimetic drug MK‐801. This study further emphasizes a critical role of altered dopaminergic development in the precipitation of specific brain dysfunctions relevant to human psychotic disorder.
Journal of Neuroscience Research | 2010
Patricia Rojas; Eliza Joodmardi; Thomas Perlmann; Sven Ove Ögren
The immediate‐early gene Nurr1 is a member of the inducible orphan nuclear receptor family. Nurr1 is essential to the differentiation, maturation, and maintenance of midbrain dopaminergic neurons and is expressed in different brain regions. We have reported that adult mice with reduced Nurr1 expression displayed an increase in immobility response to acute stress. These mice were also deficient in the retention of emotional memory. Thus, Nurr1 expression seems to be relevant to normal cognitive processes. To investigate the response of Nurr1 to a stress stimulus, Nurr1 mRNA expression was examined by in situ hybridization in adult mice using a depression‐like behavior paradigm, the forced swim test. The Nurr1 gene was rapidly and widely up‐regulated throughout the brain, including cortical areas (i.e., prefrontal cortex, primary and secondary visual cortex, primary auditory cortex, and secondary somatosensory cortex), hippocampus (dentate gyrus, CA1, CA2, and CA3), and midbrain (substantia nigra pars compacta and ventral tegmental area) at 30 min and 3 hr after the forced swim test. Dopamine content was reduced in prefrontal cortex and midbrain following swim stress. These results suggest that the increase in Nurr1 expression might be a compensatory mechanism to counteract the changes in forebrain dopamine transmission in coping with acute stress.