Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Ashley is active.

Publication


Featured researches published by Elizabeth A. Ashley.


The Lancet | 2012

Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study

Aung Pyae Phyo; Standwell Nkhoma; Kasia Stepniewska; Elizabeth A. Ashley; Shalini Nair; Rose McGready; Carit Ler Moo; Salma Al-Saai; Arjen M. Dondorp; Khin Maung Lwin; Pratap Singhasivanon; Nicholas P. J. Day; Nicholas J. White; Timothy J. C. Anderson; François Nosten

Summary Background Artemisinin-resistant falciparum malaria has arisen in western Cambodia. A concerted international effort is underway to contain artemisinin-resistant Plasmodium falciparum, but containment strategies are dependent on whether resistance has emerged elsewhere. We aimed to establish whether artemisinin resistance has spread or emerged on the Thailand–Myanmar (Burma) border. Methods In malaria clinics located along the northwestern border of Thailand, we measured six hourly parasite counts in patients with uncomplicated hyperparasitaemic falciparum malaria (≥4% infected red blood cells) who had been given various oral artesunate-containing regimens since 2001. Parasite clearance half-lives were estimated and parasites were genotyped for 93 single nucleotide polymorphisms. Findings 3202 patients were studied between 2001 and 2010. Parasite clearance half-lives lengthened from a geometric mean of 2·6 h (95% CI 2·5–2·7) in 2001, to 3·7 h (3·6–3·8) in 2010, compared with a mean of 5·5 h (5·2–5·9) in 119 patients in western Cambodia measured between 2007 and 2010. The proportion of slow-clearing infections (half-life ≥6·2 h) increased from 0·6% in 2001, to 20% in 2010, compared with 42% in western Cambodia between 2007 and 2010. Of 1583 infections genotyped, 148 multilocus parasite genotypes were identified, each of which infected between two and 13 patients. The proportion of variation in parasite clearance attributable to parasite genetics increased from 30% between 2001 and 2004, to 66% between 2007 and 2010. Interpretation Genetically determined artemisinin resistance in P falciparum emerged along the Thailand–Myanmar border at least 8 years ago and has since increased substantially. At this rate of increase, resistance will reach rates reported in western Cambodia in 2–6 years. Funding The Wellcome Trust and National Institutes of Health.


Science | 2012

A Major Genome Region Underlying Artemisinin Resistance in Malaria

Ian H. Cheeseman; Becky Miller; Shalini Nair; Standwell Nkhoma; Asako Tan; John C. Tan; Salma Al Saai; Aung Pyae Phyo; Carit Ler Moo; Khin Maung Lwin; Rose McGready; Elizabeth A. Ashley; Mallika Imwong; Kasia Stepniewska; Poravuth Yi; Arjen M. Dondorp; Mayfong Mayxay; Paul N. Newton; Nicholas J. White; François Nosten; Michael T. Ferdig; Timothy J. C. Anderson

Narrowing Down Artemisinin Resistance Knowing that antimalarial drug resistance is characterized by selective sweeps and reduced diversity around resistance mutations, Cheeseman et al. (p. 79) looked for signatures of selection in a modified genome-wide association study in parasite populations from Cambodia, Laos, and Thailand. Thirty-three regions showed evidence of selection and enrichment of known antimalarial resistance genes. Fine-mapping of parasite samples taken during the past decade narrowed the association down to a 35-kb region of seven genes on chromosome 13 that seemed to explain at least 35% of the observed reduction in parasite clearance rate. However, the absence of strong candidate mutations suggests the involvement of noncoding regulatory mutations. A 35-kilobase region on chromosome 13 of Plasmodium falciparum is linked to reductions in parasite clearance in Southeast Asia. Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia and has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CRs) after treatment. We used a two-phase strategy to identify genome region(s) underlying this ongoing selective event. Geographical differentiation and haplotype structure at 6969 polymorphic single-nucleotide polymorphisms (SNPs) in 91 parasites from Cambodia, Thailand, and Laos identified 33 genome regions under strong selection. We screened SNPs and microsatellites within these regions in 715 parasites from Thailand, identifying a selective sweep on chromosome 13 that shows strong association (P = 10−6 to 10−12) with slow CRs, illustrating the efficacy of targeted association for identifying the genetic basis of adaptive traits.


Lancet Infectious Diseases | 2015

Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker

Kyaw Myo Tun; Mallika Imwong; Khin Maung Lwin; Aye A. Win; Tin Maung Hlaing; Thaung Hlaing; Khin Lin; Myat Phone Kyaw; Katherine Plewes; M. Abul Faiz; Mehul Dhorda; Phaik Yeong Cheah; Sasithon Pukrittayakamee; Elizabeth A. Ashley; Timothy J. C. Anderson; Shalini Nair; Marina McDew-White; Jennifer A. Flegg; Eric P.M. Grist; Philippe Allard Guérin; Richard J. Maude; Frank Smithuis; Arjen M. Dondorp; Nicholas P. J. Day; François Nosten; Nicholas J. White; Charles J. Woodrow

Summary Background Emergence of artemisinin resistance in southeast Asia poses a serious threat to the global control of Plasmodium falciparum malaria. Discovery of the K13 marker has transformed approaches to the monitoring of artemisinin resistance, allowing introduction of molecular surveillance in remote areas through analysis of DNA. We aimed to assess the spread of artemisinin-resistant P falciparum in Myanmar by determining the relative prevalence of P falciparum parasites carrying K13-propeller mutations. Methods We did this cross-sectional survey at malaria treatment centres at 55 sites in ten administrative regions in Myanmar, and in relevant border regions in Thailand and Bangladesh, between January, 2013, and September, 2014. K13 sequences from P falciparum infections were obtained mainly by passive case detection. We entered data into two geostatistical models to produce predictive maps of the estimated prevalence of mutations of the K13 propeller region across Myanmar. Findings Overall, 371 (39%) of 940 samples carried a K13-propeller mutation. We recorded 26 different mutations, including nine mutations not described previously in southeast Asia. In seven (70%) of the ten administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. Geospatial mapping showed that the overall prevalence of K13 mutations exceeded 10% in much of the east and north of the country. In Homalin, Sagaing Region, 25 km from the Indian border, 21 (47%) of 45 parasite samples carried K13-propeller mutations. Interpretation Artemisinin resistance extends across much of Myanmar. We recorded P falciparum parasites carrying K13-propeller mutations at high prevalence next to the northwestern border with India. Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of artemisinin resistance to other regions is to be avoided. Funding Wellcome Trust–Mahidol University–Oxford Tropical Medicine Research Programme and the Bill & Melinda Gates Foundation.


Nature Genetics | 2015

Genetic architecture of artemisinin-resistant Plasmodium falciparum

Olivo Miotto; Roberto Amato; Elizabeth A. Ashley; Bronwyn MacInnis; Jacob Almagro-Garcia; Chanaki Amaratunga; Pharath Lim; Daniel Mead; Samuel O. Oyola; Mehul Dhorda; Mallika Imwong; Charles J. Woodrow; Magnus Manske; Jim Stalker; Eleanor Drury; Susana Campino; Lucas Amenga-Etego; Thuy-Nhien Nguyen Thanh; Hien Tinh Tran; Pascal Ringwald; Delia Bethell; François Nosten; Aung Pyae Phyo; Sasithon Pukrittayakamee; Kesinee Chotivanich; Char Meng Chuor; Chea Nguon; Seila Suon; Sokunthea Sreng; Paul N. Newton

We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population.


PLOS ONE | 2009

Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment

Verena I. Carrara; Julien Zwang; Elizabeth A. Ashley; Ric N. Price; Kasia Stepniewska; Marion Barends; Alan Brockman; Timothy J. C. Anderson; Rose McGready; Lucy Phaiphun; Stephane Proux; Michèle van Vugt; Robert Hutagalung; Khin Maung Lwin; Aung Pyae Phyo; Piyanuch Preechapornkul; Mallika Imwong; Sasithon Pukrittayakamee; Pratap Singhasivanon; Nicholas J. White; François Nosten

Background Artemisinin combination treatments (ACT) are recommended as first line treatment for falciparum malaria throughout the malaria affected world. We reviewed the efficacy of a 3-day regimen of mefloquine and artesunate regimen (MAS3), over a 13 year period of continuous deployment as first-line treatment in camps for displaced persons and in clinics for migrant population along the Thai-Myanmar border. Methods and Findings 3,264 patients were enrolled in prospective treatment trials between 1995 and 2007 and treated with MAS3. The proportion of patients with parasitaemia persisting on day-2 increased significantly from 4.5% before 2001 to 21.9% since 2002 (p<0.001). Delayed parasite clearance was associated with increased risk of developing gametocytaemia (AOR = 2.29; 95% CI, 2.00–2.69, p = 0.002). Gametocytaemia on admission and carriage also increased over the years (p = 0.001, test for trend, for both). MAS3 efficacy has declined slightly but significantly (Hazards ratio 1.13; 95% CI, 1.07–1.19, p<0.001), although efficacy in 2007 remained well within acceptable limits: 96.5% (95% CI, 91.0–98.7). The in vitro susceptibility of P. falciparum to artesunate increased significantly until 2002, but thereafter declined to levels close to those of 13 years ago (geometric mean in 2007: 4.2 nM/l; 95% CI, 3.2–5.5). The proportion of infections caused by parasites with increased pfmdr1 copy number rose from 30% (12/40) in 1996 to 53% (24/45) in 2006 (p = 0.012, test for trend). Conclusion Artesunate-mefloquine remains a highly efficacious antimalarial treatment in this area despite 13 years of widespread intense deployment, but there is evidence of a modest increase in resistance. Of particular concern is the slowing of parasitological response to artesunate and the associated increase in gametocyte carriage.


BMC Medicine | 2015

Artemether-lumefantrine treatment of uncomplicated Plasmodium falciparum malaria: a systematic review and meta-analysis of day 7 lumefantrine concentrations and therapeutic response using individual patient data

Elizabeth A. Ashley; Francesca T. Aweeka; Karen I. Barnes; Quique Bassat; Steffen Borrmann; Prabin Dahal; Tme Davis; Philippe Deloron; Mey Bouth Denis; Abdoulaye Djimde; Jean-François Faucher; Blaise Genton; Philippe J Guerin; Kamal Hamed; Eva Maria Hodel; Liusheng Huang; Jullien; Harin Karunajeewa; Kiechel; Poul-Erik Kofoed; Gilbert Lefèvre; Niklas Lindegardh; Kevin Marsh; Andreas Mårtensson; Mayfong Mayxay; Rose McGready; C Moreira; Paul N. Newton; Billy Ngasala; François Nosten

Achieving adequate antimalarial drug exposure is essential for curing malaria. Day 7 blood or plasma lumefantrine concentrations provide a simple measure of drug exposure that correlates well with artemether-lumefantrine efficacy. However, the ‘therapeutic’ day 7 lumefantrine concentration threshold needs to be defined better, particularly for important patient and parasite sub-populations. The WorldWide Antimalarial Resistance Network (WWARN) conducted a large pooled analysis of individual pharmacokinetic-pharmacodynamic data from patients treated with artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria, to define therapeutic day 7 lumefantrine concentrations and identify patient factors that substantially alter these concentrations. A systematic review of PubMed, Embase, Google Scholar, ClinicalTrials.gov and conference proceedings identified all relevant studies. Risk of bias in individual studies was evaluated based on study design, methodology and missing data. Of 31 studies identified through a systematic review, 26 studies were shared with WWARN and 21 studies with 2,787 patients were included. Recrudescence was associated with low day 7 lumefantrine concentrations (HR 1.59 (95 % CI 1.36 to 1.85) per halving of day 7 concentrations) and high baseline parasitemia (HR 1.87 (95 % CI 1.22 to 2.87) per 10-fold increase). Adjusted for mg/kg dose, day 7 concentrations were lowest in very young children (<3 years), among whom underweight-for-age children had 23 % (95 % CI −1 to 41 %) lower concentrations than adequately nourished children of the same age and 53 % (95 % CI 37 to 65 %) lower concentrations than adults. Day 7 lumefantrine concentrations were 44 % (95 % CI 38 to 49 %) lower following unsupervised treatment. The highest risk of recrudescence was observed in areas of emerging artemisinin resistance and very low transmission intensity. For all other populations studied, day 7 concentrations ≥200 ng/ml were associated with >98 % cure rates (if parasitemia <135,000/μL). Current artemether-lumefantrine dosing recommendations achieve day 7 lumefantrine concentrations ≥200 ng/ml and high cure rates in most uncomplicated malaria patients. Three groups are at increased risk of treatment failure: very young children (particularly those underweight-for-age); patients with high parasitemias; and patients in very low transmission intensity areas with emerging parasite resistance. In these groups, adherence and treatment response should be monitored closely. Higher, more frequent, or prolonged dosage regimens should now be evaluated in very young children, particularly if malnourished, and in patients with hyperparasitemia.


Current Opinion in Infectious Diseases | 2005

Artemisinin-based combinations.

Elizabeth A. Ashley; Nicholas J. White

Purpose of review Artemisinin-based combination treatments have been the mainstay of treatment for falciparum malaria in Southeast Asia for more than 10 years and are now increasingly recommended as first-line treatment throughout the rest of the world. Recent findings A large multicentre randomised trial conducted in East Asia has shown a 35% reduction in mortality from severe malaria following treatment with parenteral artesunate compared with quinine. There is increasing evidence that artemisinin-based combination treatments are safe and rapidly effective. Artemether–lumefantrine (six doses) has been shown to be very effective in large trials reported from Uganda and Tanzania. A once daily three-dose treatment of dihydroartemisinin piperaquine, a newer fixed combination, was a highly efficacious and well tolerated treatment for multi-drug resistant falciparum malaria in Southeast Asia. Summary Early diagnosis and treatment of uncomplicated malaria with effective drugs remains a priority as part of a comprehensive malaria control strategy. Artemisinin-based combination treatments have consistently been shown to be highly effective and safe. The challenge is to make them accessible in tropical countries.


Science | 2015

Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance

Sachel Mok; Elizabeth A. Ashley; Pedro Eduardo Ferreira; Lei Zhu; Z. Lin; Tsin W. Yeo; Kesinee Chotivanich; Mallika Imwong; Sasithon Pukrittayakamee; Mehul Dhorda; Chea Nguon; Pharath Lim; Chanaki Amaratunga; Seila Suon; Tran Tinh Hien; Ye Htut; Ma Faiz; Marie Onyamboko; Mayfong Mayxay; Paul N. Newton; Rupam Tripura; Charles J. Woodrow; Olivo Miotto; Dominic P. Kwiatkowski; François Nosten; Nicholas P. J. Day; Peter Rainer Preiser; Nicholas J. White; Arjen M. Dondorp; Rick M. Fairhurst

Mechanisms propelling drug resistance If it were to spread, resistance to the drug artemisinin would seriously derail the recent gains of global malaria control programs (see the Perspective by Sibley). Mutations in a region called the K13-propeller are predictive for artemisinin resistance in Southeast Asia. Mok et al. looked at the patterns of gene expression in parasites isolated from more than 1000 patients sampled in Africa, Bangladesh, and the Mekong region. A range of mutations that alter protein repair pathways and the timing of the parasites developmental cycle were only found in parasites from the Mekong region. Straimer et al. genetically engineered the K13 region of parasites obtained from recent clinical isolates. Mutations in this region were indeed responsible for the resistance phenotypes. Science, this issue p. 431, p. 428; see also p. 373 Resistance to the primary antimalarial drug lies in mutations in protein repair and developmental pathways. [Also see Perspective by Sibley] Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain–carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.


Lancet Infectious Diseases | 2010

Effectiveness of five artemisinin combination regimens with or without primaquine in uncomplicated falciparum malaria: an open-label randomised trial

Frank Smithuis; Moe Kyaw Kyaw; Ohn Phe; Thein Win; Pyay Phyo Aung; Aung Pyay Phyo Oo; Arkar Linn Naing; Mya Yee Nyo; Naing Zaw Htun Myint; Mallika Imwong; Elizabeth A. Ashley; Sue J. Lee; Nicholas J. White

BACKGROUND Artemisinin-combination therapy (ACT) is recommended as first-line treatment of falciparum malaria throughout the world, and fixed-dose combinations are preferred by WHO; whether a single gametocytocidal dose of primaquine should be added is unknown. We aimed to compare effectiveness of four fixed-dose ACTs and a loose tablet combination of artesunate and mefloquine, and assess the addition of a single gametocytocidal dose of primaquine. METHODS In an open-label randomised trial in clinics in Rakhine state, Kachin state, and Shan state in Myanmar (Burma) between Dec 30, 2008, and March 20, 2009, we compared the effectiveness of all four WHO-recommended fixed-dose ACTs (artesunate-mefloquine, artesunate-amodiaquine, dihydroartemisinin-piperaquine, artemether-lumefantrine) and loose artesunate-mefloquine in Burmese adults and children. Eligible patients were those who presented to the clinics with acute uncomplicated Plasmodium falciparum malaria or mixed infection, who were older than 6 months, and who weighed more than 5 kg. Treatments were randomised in equal numbers within blocks of 50 and allocation was in sealed envelopes. All patients were also randomly assigned to receive either a single dose of primaquine 0·75 mg base/kg or not. Patients were followed up for 63 days. Treatment groups were compared by analysis of variance and multiple logistic regression. The primary outcome was the 63 day recrudescence rate. This study is registered with clinicaltrials.gov, number NCT00902811. FINDINGS 155 patients received artesunate-amodiaquine, 162 artemether-lumefantrine, 169 artesunate-mefloquine, 161 loose artesunate-mefloquine, and 161 dihydroartemisinin-piperaquine. By day 63 of follow-up, 14 patients (9·4%; 95% CI 5·7-15·3%) on artesunate-amodiaquine had recrudescent P falciparum infections, a rate significantly higher than for artemether-lumefantrine (two patients; 1·4%; 0·3-5·3; p=0·0013), fixed-dose artesunate-mefloquine (0 patients; 0-2·3; p<0·0001), loose artesunate-mefloquine (two patients; 1·3%; 0·3-5·3; p=0·0018), and dihydroartemisinin-piperaquine (two patients 1·3%; 0·3-5·2%; p=0·0012). Hazard ratios for re-infection (95% CI) after artesunate-amodiaquine were 3·2 (1·3-8·0) compared with the two artesunate-mefloquine groups (p=0·01), 2·6 (1·0-6-0) compared with artemether-lumefantrine (p=0·04), and 2·3 (0·9-6·0) compared with dihydroartemisinin-piperaquine (p=0·08). Mixed falciparum and vivax infections were common: 129 (16%) had a mixed infection at presentation and 330 (41%) patients had one or more episodes of Plasmodium vivax infection during follow-up. The addition of a single dose of primaquine (0·75 mg/kg) reduced P falciparum gametocyte carriage substantially: rate ratio 11·9 (95% CI 7·4-20·5). All regimens were well tolerated. Adverse events were reported by 599 patients, most commonly vomiting and dizziness. Other side-effects were less common and were not related to a specific treatment. INTERPRETATION Artesunate-amodiaquine should not be used in Myanmar, because the other ACTs are substantially more effective. Artesunate-mefloquine provided the greatest post-treatment suppression of malaria. Adding a single dose of primaquine would substantially reduce transmission potential. Vivax malaria, not recurrent falciparum malaria, is the main complication after treatment of P falciparum infections in this region. FUNDING Médecins sans Frontières (Holland) and the Wellcome Trust Mahidol University Oxford Tropical Medicine Research Programme.


The Lancet | 2006

Efficacy and effectiveness of dihydroartemisinin-piperaquine versus artesunate-mefloquine in falciparum malaria: an open-label randomised comparison

Frank Smithuis; Moe Kyaw Kyaw; Ohn Phe; Khin Zarli Aye; Linn Htet; Marion Barends; Niklas Lindegardh; Thida Singtoroj; Elizabeth A. Ashley; Saw Lwin; Kasia Stepniewska; Nicholas J. White

BACKGROUND Artemisinin-based combinations are judged the best treatments for multidrug-resistant Plasmodium falciparum malaria. Artesunate-mefloquine is widely recommended in southeast Asia, but its high cost and tolerability profile remain obstacles to widespread deployment. To assess whether dihydroartemisinin-piperaquine is a suitable alternative to artesunate-mefloquine, we compared the safety, tolerability, efficacy, and effectiveness of the two regimens for the treatment of uncomplicated falciparum in western Myanmar (Burma). METHODS We did an open randomised comparison of 3-day regimens of artesunate-mefloquine (12/25 mg/kg) versus dihydroartemisinin-piperaquine (6.3/50 mg/kg) for the treatment of children aged 1 year or older and in adults with uncomplicated falciparum malaria in Rakhine State, western Myanmar. Within each group, patients were randomly assigned supervised or non-supervised treatment. The primary endpoint was the PCR-confirmed parasitological failure rate by day 42. Failure rates at day 42 were estimated by Kaplan-Meier survival analysis. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN27914471. FINDINGS Of 652 patients enrolled, 327 were assigned dihydroartemisinin-piperaquine (156 supervised and 171 not supervised), and 325 artesunate-mefloquine (162 and 163, respectively). 16 patients were lost to follow-up, and one patient died 22 days after receiving dihydroartemisinin-piperaquine. Recrudescent parasitaemias were confirmed in only two patients; the day 42 failure rate was 0.6% (95% CI 0.2-2.5) for dihydroartemisinin-piperaquine and 0 (0-1.2) for artesunate-mefloquine. Whole-blood piperaquine concentrations at day 7 were similar for patients with observed and non-observed dihydroartemisinin-piperaquine treatment. Gametocytaemia developed more frequently in patients who had received dihydroartemisinin-piperaquine than in those on artesunate-mefloquine: day 7, 18 (10%) of 188 versus five (2%) of 218; relative risk 4.2 (1.6-11.0) p=0.011. INTERPRETATION Dihydroartemisinin-piperaquine is a highly efficacious and inexpensive treatment of multidrug-resistant falciparum malaria and is well tolerated by all age groups. The effectiveness of the unsupervised treatment, as in the usual context of use, equalled its supervised efficacy, indicating good adherence without supervision. Dihydroartemisinin-piperaquine is a good alternative to artesunate-mefloquine.

Collaboration


Dive into the Elizabeth A. Ashley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ric N. Price

Charles Darwin University

View shared research outputs
Researchain Logo
Decentralizing Knowledge